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Constructivity of Martin–Löf type theory

Theorem
Take u a closed term of type N in MLTT, and successively apply
reduction rules to u. Then
• this procedure terminates,
• the order of the reductions does not matter,
• the result is a numeral (of the form S(. . . (S(0)). . . )).

The last point (canonicity) does not work in the presence of
axioms.



Homotopy type theory

Homotopy type theory (HoTT) is

MLTT + Univalence axiom (+ Higher inductive types)

The presence of an axiom destroys the canonicity property. There
are closed terms of type N which are stuck but are not numerals.

Nevertheless, univalence “feels” constructive.

Homotopy canonicity (conjectured by Voevodsky, 2010?)
Given a closed term u : N, there exists a closed term k : N and a
proof p : u =N k, where k does not use univalence.
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Constructivity of homotopy type theory

There are now many results giving some constructive nature to
some version of HoTT:

→ First cubical model (BCH)
→ Cubical type theories and more cubical models (CCHM,

ABCFHL, OP, ACCRS)
→ Homotopy canonicity (Sattler-Kapulkin, not yet constructive)

And work in progress towards constructive simplicial models (GH,
vdBF).
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Implementations

Many implementations have been written:

→ cubical (implementation of the first cubical model from BCH)
→ cubicaltt (cubical type theory from CCHM)
→ redPRL (cartesian, and in the style of Nuprl)
→ yacctt (cartesian cubical type theory)
→ redtt (successor of redPRL)
→ cubical Agda (based on CCHM and Agda)
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π4(S3)

Proposition (2013)
One can construct a natural number n such that

π4(S3) ' Z/nZ.

Proposition (2016)
Moreover, n = 2.

Open problem
Compute the value of n directly.
(And we tried! But all of our experiments, using the various
implementations, ran out of either memory or time.)
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The definition

Z ΩS1 Ω2S2 Ω3S3 Ω3(S1 ∗ S1) Ω3S2

Ω3(S1 ∗ S1) Ω3S3 Ω2‖S2‖2 Ω‖ΩS2‖1 ‖Ω2S2‖0 ΩS1 Z

λn.loopn ΩϕS1 Ω2ϕS2 Ω3e Ω3α

h

Ω3e−1 e3 Ωκ2,S2 κ1,ΩS2 e2 e1

n is the absolute value of the image of 1


