Computations in homotopy type theory

Guillaume Brunerie

MLoC 2019, University of Stockholm
August 23, 2019
Constructivity of Martin–Löf type theory

Theorem
Take u a closed term of type \mathbb{N} in MLTT, and successively apply reduction rules to u. Then

- this procedure terminates,
- the order of the reductions does not matter,
- the result is a numeral (of the form $S(\ldots(S(0))\ldots)$).

The last point (canonicity) does not work in the presence of axioms.
Homotopy type theory (HoTT) is

\[\text{MLTT + Univalence axiom (+ Higher inductive types)} \]

The presence of an axiom destroys the canonicity property. There are closed terms of type \(\mathbb{N} \) which are stuck but are not numerals.
Homotopy type theory

Homotopy type theory (HoTT) is

\[\text{MLTT + Univalence axiom (+ Higher inductive types)} \]

The presence of an axiom destroys the canonicity property. There are closed terms of type \(\mathbb{N} \) which are stuck but are not numerals.

Nevertheless, univalence “feels” constructive.

Homotopy canonicity (conjectured by Voevodsky, 2010?)

Given a closed term \(u : \mathbb{N} \), there exists a closed term \(k : \mathbb{N} \) and a proof \(p : u \equiv_{\mathbb{N}} k \), where \(k \) does not use univalence.
Constructivity of homotopy type theory

There are now many results giving some constructive nature to some version of HoTT:
Constructivity of homotopy type theory

There are now many results giving some constructive nature to some version of HoTT:

→ First cubical model (BCH)
Constructivity of homotopy type theory

There are now many results giving some constructive nature to some version of HoTT:

→ First cubical model (BCH)
→ Cubical type theories and more cubical models (CCHM, ABCFHL, OP, ACCRS)
Constructivity of homotopy type theory

There are now many results giving some constructive nature to some version of HoTT:

→ First cubical model (BCH)
→ Cubical type theories and more cubical models (CCHM, ABCFHL, OP, ACCRS)
→ Homotopy canonicity (Sattler-Kapulkin, not yet constructive)
Constructivity of homotopy type theory

There are now many results giving some constructive nature to some version of HoTT:

→ First cubical model (BCH)
→ Cubical type theories and more cubical models (CCHM, ABCFHL, OP, ACCRS)
→ Homotopy canonicity (Sattler-Kapulkin, not yet constructive)

And work in progress towards constructive simplicial models (GH, vdBF).
Many implementations have been written:

- **cubical** (implementation of the first cubical model from BCH)
- **cubicaltt** (cubical type theory from CCHM)
- **redPRL** (cartesian, and in the style of Nuprl)
- **yacctt** (cartesian cubical type theory)
- **redtt** (successor of redPRL)
- **cubical Agda** (based on CCHM and Agda)
Many implementations have been written:
 → cubical (implementation of the first cubical model from BCH)
Implementations

Many implementations have been written:

→ cubical (implementation of the first cubical model from BCH)
→ cubicaltt (cubical type theory from CCHM)
Many implementations have been written:

→ cubical (implementation of the first cubical model from BCH)
→ cubicaltt (cubical type theory from CCHM)
→ redPRL (cartesian, and in the style of Nuprl)
Implementations

Many implementations have been written:

→ cubical (implementation of the first cubical model from BCH)
→ cubicaltt (cubical type theory from CCHM)
→ redPRL (cartesian, and in the style of Nuprl)
→ yacctt (cartesian cubical type theory)
Implementations

Many implementations have been written:

→ cubical (implementation of the first cubical model from BCH)
→ cubicaltt (cubical type theory from CCHM)
→ redPRL (cartesian, and in the style of Nuprl)
→ yacctt (cartesian cubical type theory)
→ redtt (successor of redPRL)
Implementations

Many implementations have been written:

→ cubical (implementation of the first cubical model from BCH)
→ cubicaltt (cubical type theory from CCHM)
→ redPRL (cartesian, and in the style of Nuprl)
→ yacctt (cartesian cubical type theory)
→ retdt (successor of redPRL)
→ cubical Agda (based on CCHM and Agda)
Proposition (2013)

One can construct a natural number n such that

$$\pi_4(\mathbb{S}^3) \simeq \mathbb{Z}/n\mathbb{Z}.$$
Proposition (2013)
One can construct a natural number n such that

$$\pi_4(S^3) \cong \mathbb{Z}/n\mathbb{Z}.$$

Proposition (2016)
Moreover, $n = 2$.
Proposition (2013)
One can construct a natural number n such that

$$\pi_4(S^3) \simeq \mathbb{Z}/n\mathbb{Z}.$$

Proposition (2016)
Moreover, $n = 2$.

Open problem
Compute the value of n directly.
(And we tried! But all of our experiments, using the various implementations, ran out of either memory or time.)
The definition

$$\mathbb{Z} \xrightarrow{\lambda n.\text{loop}^n} \Omega S^1 \xrightarrow{\Omega \varphi S^1} \Omega^2 S^2 \xrightarrow{\Omega^2 \varphi S^2} \Omega^3 S^3 \xrightarrow{\Omega^3 e} \Omega^3 (S^1 \ast S^1) \xrightarrow{\Omega^3 \alpha} \Omega^3 S^2$$

$$\Omega^3 (S^1 \ast S^1) \rightarrow \Omega^3 S^3 \rightarrow \Omega^2 \|S^2\|_2 \rightarrow \Omega \|\Omega S^2\|_1 \rightarrow \|\Omega^2 S^2\|_0 \rightarrow \Omega S^1 \rightarrow \mathbb{Z}$$

n is the absolute value of the image of 1