Computations in homotopy type theory

Guillaume Brunerie

MLoC 2019, University of Stockholm August 23, 2019

Constructivity of Martin-Löf type theory

Theorem

Take u a closed term of type \mathbb{N} in MLTT, and successively apply reduction rules to u. Then

- this procedure terminates,
- the order of the reductions does not matter,
- the result is a numeral (of the form $S(\ldots(S(0)) \ldots$).

The last point (canonicity) does not work in the presence of axioms.

Homotopy type theory

Homotopy type theory (HoTT) is
MLTT + Univalence axiom (+ Higher inductive types)
The presence of an axiom destroys the canonicity property. There are closed terms of type \mathbb{N} which are stuck but are not numerals.

Homotopy type theory

Homotopy type theory (HoTT) is
MLTT + Univalence axiom (+ Higher inductive types)
The presence of an axiom destroys the canonicity property. There are closed terms of type \mathbb{N} which are stuck but are not numerals.

Nevertheless, univalence "feels" constructive.
Homotopy canonicity (conjectured by Voevodsky, 2010?)
Given a closed term $u: \mathbb{N}$, there exists a closed term $k: \mathbb{N}$ and a proof $p: u=\mathbb{N} k$, where k does not use univalence.

Constructivity of homotopy type theory

There are now many results giving some constructive nature to some version of HoTT:

Constructivity of homotopy type theory

There are now many results giving some constructive nature to some version of HoTT:
\rightarrow First cubical model (BCH)

Constructivity of homotopy type theory

There are now many results giving some constructive nature to some version of HoTT:
\rightarrow First cubical model (BCH)
\rightarrow Cubical type theories and more cubical models (CCHM, ABCFHL, OP, ACCRS)

Constructivity of homotopy type theory

There are now many results giving some constructive nature to some version of HoTT:
\rightarrow First cubical model (BCH)
\rightarrow Cubical type theories and more cubical models (CCHM, ABCFHL, OP, ACCRS)
\rightarrow Homotopy canonicity (Sattler-Kapulkin, not yet constructive)

Constructivity of homotopy type theory

There are now many results giving some constructive nature to some version of HoTT:
\rightarrow First cubical model (BCH)
\rightarrow Cubical type theories and more cubical models (CCHM, ABCFHL, OP, ACCRS)
\rightarrow Homotopy canonicity (Sattler-Kapulkin, not yet constructive)

And work in progress towards constructive simplicial models (GH, vdBF).

Implementations

Many implementations have been written:

Implementations

Many implementations have been written:
\rightarrow cubical (implementation of the first cubical model from BCH)

Implementations

Many implementations have been written:
\rightarrow cubical (implementation of the first cubical model from BCH)
\rightarrow cubicaltt (cubical type theory from CCHM)

Implementations

Many implementations have been written:
\rightarrow cubical (implementation of the first cubical model from BCH)
\rightarrow cubicaltt (cubical type theory from CCHM)
\rightarrow redPRL (cartesian, and in the style of Nuprl)

Implementations

Many implementations have been written:
\rightarrow cubical (implementation of the first cubical model from BCH)
\rightarrow cubicaltt (cubical type theory from CCHM)
\rightarrow redPRL (cartesian, and in the style of Nuprl)
\rightarrow yacctt (cartesian cubical type theory)

Implementations

Many implementations have been written:
\rightarrow cubical (implementation of the first cubical model from BCH)
\rightarrow cubicaltt (cubical type theory from CCHM)
\rightarrow redPRL (cartesian, and in the style of Nuprl)
\rightarrow yacctt (cartesian cubical type theory)
\rightarrow redtt (successor of redPRL)

Implementations

Many implementations have been written:
\rightarrow cubical (implementation of the first cubical model from BCH)
\rightarrow cubicaltt (cubical type theory from CCHM)
\rightarrow redPRL (cartesian, and in the style of Nuprl)
\rightarrow yacctt (cartesian cubical type theory)
\rightarrow redtt (successor of redPRL)
\rightarrow cubical Agda (based on CCHM and Agda)

$\pi_{4}\left(\mathbb{S}^{3}\right)$

Proposition (2013)

One can construct a natural number n such that

$$
\pi_{4}\left(\mathbb{S}^{3}\right) \simeq \mathbb{Z} / n \mathbb{Z}
$$

$\pi_{4}\left(\mathbb{S}^{3}\right)$

Proposition (2013)
One can construct a natural number n such that

$$
\pi_{4}\left(\mathbb{S}^{3}\right) \simeq \mathbb{Z} / n \mathbb{Z}
$$

Proposition (2016)
Moreover, $n=2$.

$\pi_{4}\left(\mathbb{S}^{3}\right)$

Proposition (2013)

One can construct a natural number n such that

$$
\pi_{4}\left(\mathbb{S}^{3}\right) \simeq \mathbb{Z} / n \mathbb{Z} .
$$

Proposition (2016)

Moreover, $n=2$.
Open problem
Compute the value of n directly.
(And we tried! But all of our experiments, using the various implementations, ran out of either memory or time.)

The definition

$$
\begin{aligned}
& \mathbb{Z} \xrightarrow{\lambda n .1 \circ \circ p^{n}} \Omega \mathbb{S}^{1} \xrightarrow{\Omega \varphi_{\mathbb{S}}^{1}} \Omega^{2} \mathbb{S}^{2} \xrightarrow[h]{\Omega^{2} \varphi_{\mathbb{S}^{2}}} \Omega^{3} \mathbb{S}^{3} \xrightarrow{\Omega^{3} e} \Omega^{3}\left(\mathbb{S}^{1} * \mathbb{S}^{1}\right)^{\Omega^{3} \alpha} \rightarrow \Omega^{3} \mathbb{S}^{2}
\end{aligned}
$$

n is the absolute value of the image of 1

