Towards a constructive simplicial model of Univalent Foundations

Nicola Gambino¹ Simon Henry²

¹University of Leeds

²University of Ottawa

Mathematical Logic and Constructivity 2019

University of Stockholm August 21st, 2019 To define a model of Univalent Foundations that is

- (1) definable constructively, i.e. without EM and AC
- (2) defined in a category homotopically-equivalent to **Top**.

Univalent Foundations = $\mathbf{ML} + \mathbf{UA}$, where

- ML = Martin-Löf type theory with one universe type
- ► **UA** = Voevodsky's Univalence Axiom

Open problem since \sim 2012.

Related work

Cubical approach:

▶ [BCH], [CCHM], [OP], ... do (1) but not (2).

Simplicial approach has some advantages:

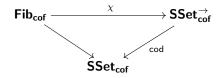
- more familiar
- uses standard notion of Kan fibration
- straightforward equivalence with **Top**.

Ongoing work:

- ▶ [vdBF] attempts both (1) and (2)
- ▶ [ACCRS] does (1) and (2) using equivariant fibrations.

Main result

Theorem (Gambino and Henry). Constructively, there exists a comprehension category



with

- all the type constructors of ML
- univalence of the universe
- Π-types are weakly stable, other type constructors are pseudo-stable.

 $SSet_{cof} = full subcategory of cofibrant simplicial sets \subseteq SSet$

References

- [H1] S. Henry Weak model structures in classical and constructive mathematics ArXiv, 2018
- [H2] S. Henry A constructive account of the Kan-Quillen model structure and of Kan's Ex $^\infty$ functor ArXiv, 2019
- [GSS] N. Gambino and K. Szumiło and C. Sattler The constructive Kan-Quillen model structure: two new proofs ArXiv, 2019
- [GH] N. Gambino and S. Henry Towards a constructive simplicial model of Univalent Foundations ArXiv, 2019

Outline of the talk

- Part I. Review of the classical simplicial model
- Part II. The constructive Kan-Quillen model structure
- Part III. Function types and the univalent universe.

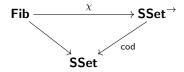
Part I

Review of the classical simplicial model

Voevodsky's model

Idea

- contexts = simplicial sets
- dependent types = Kan fibrations.
- \Rightarrow The comprehension category



It supports

- all the type constructors of ML
- a univalent universe

satisfying stability conditions.

It gives rise to a strict model via a splitting process.

Key facts

(0) Existence of the Kan-Quillen model structure on **SSet**.

(1) $A, B \in \mathbf{SSet}, B$ Kan complex $\Rightarrow B^A$ Kan complex.

(2) $p: A \rightarrow X$ Kan fibration \Rightarrow the right adjoint to pullback

$$\Pi_p$$
: **SSet**_{/A} \rightarrow **SSet**_{/X}

preserves Kan fibrations.

(3) There is a Kan fibration $\pi: \tilde{U} \to U$, with U Kan complex, that classifies small Kan fibrations, i.e.

(4) The Kan fibration $\pi: \tilde{U} \to U$ is univalent.

Constructivity problems

- ▶ Kan-Quillen model structure has classical proofs.
- ▶ [BCP] shows that (1), (2) require classical logic.
- [GS] fixed (1), (2) by introducing uniform Kan fibrations in SSet, but this creates problems for (3), (4).

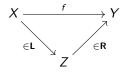
Part II

The constructive Kan-Quillen model structure

Quick review of model structures (I)

A weak factorisation system on a category ${\cal E}$ consists of two classes of maps $(L\,,R)$ closed under retracts and such that

• For every $f: X \to Y$ there is



▶ For every $i \in L$, $p \in R$, and diagram

there is a diagonal filler $j: B \to X$.

Examples.

- ▶ In Set, (decidable) injections and (split) surjections.
- In MLTT, identity types [GG]

Quick review of model structures (II)

A model structure on a category ${\mathcal E}$ consists of three classes of maps

 $\left(\boldsymbol{W}\,,\boldsymbol{C}\,,\boldsymbol{F}\right)$

such that

- ► W satisfies 3-for-2
- $(C, W \cap F)$ is a weak factorisation system,
- $(W \cap C, F)$ is a weak factorisation system.

Idea. The wfs $(\mathbf{W} \cap \mathbf{C}, \mathbf{F})$ is used to interpret identity types [AW]

Example. In **Gpd**, there is the model structure of categorical equivalences, functors injective on objects and isofibrations (cf. Hofmann-Streicher).

Constructive simplicial homotopy theory

We start with

$$I = \left\{ \begin{array}{l} \partial \Delta_n \to \Delta_n \mid n \ge 0 \end{array} \right\}$$
$$J = \left\{ \begin{array}{l} \Lambda_n^k \to \Delta_n \mid 0 \le k \le n \end{array} \right\}$$

and generate wfs's

- $(\mathbf{Sat}(I), I^{\oplus}) =$ 'cofibrations' and 'trivial fibrations'
- $(\mathbf{Sat}(J), J^{\uparrow}) =$ 'trivial cofibrations' and 'fibrations'.

We wish to have a model structure (W, C, F) such that

$$\mathsf{C} = \mathsf{Sat}(I), \qquad \mathsf{W} \cap \mathsf{F} = I^{\pitchfork}$$
 $\mathsf{W} \cap \mathsf{C} = \mathsf{Sat}(J), \qquad \mathsf{F} = J^{\pitchfork}$

In particular, $\mathbf{F} = \text{Kan}$ fibrations. This helps with (3).

Constructive cofibrations

Let $\mathbf{C} = \mathbf{Sat}(I)$.

Classically, for $i: A \rightarrow B$ in **SSet**, TFAE

- i ∈ C
- i is a monomorphism

Constructively, for $i: A \rightarrow B$ in **SSet**, TFAE

i ∈ C

▶ *i* is a monomorphism s.t. $\forall n, i_n : A_n \rightarrow B_n$ is complemented, i.e.

$$\forall y \in B_n (y \in A_n \lor y \notin A_n),$$

and degeneracy of simplices in $B_n \setminus A_n$ is decidable.

on Set.

The constructive Kan-Quillen model structure

Theorem [H2]. Constructively, the category **SSet** admits a model structure (W, C, F) such that

$$C = Sat(I)$$
, $F = Kan$ fibrations.

Two other proofs in [GSS].

Note

- Constructively, not every object is cofibrant: X is cofibrant if and only if degeneracy of simplices in X is decidable.
- Every object X has a cofibrant replacement, given by L(X) cofibrant and t: L(X) → X in W ∩ F.

Outline of one proof from [GSS]

This is inspired by [GS] and [S].

- 1. Construct the wfs's as above.
- 2. Prove a restricted Frobenius property: in a pullback square

with $Y \to X$ a fibration with Y cofibrant, if $i \in Sat(J)$ then $j \in Sat(J)$.

- 3. Prove the equivalence extension property in $SSet_{cof}$
- 4. Establish a model structure on SSet_{cof}
- 5. Extend it to SSet via cofibrant replacement functor.

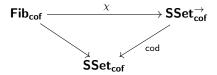
Part III

Function types and the univalent universe

Towards a constructive simplicial model

Idea

- use cofibrancy to solve constructivity issues,
- contexts are cofibrant simplicial sets,
- types are Kan fibrations between cofibrant simplicial sets.
- \Rightarrow The comprehension category



Challenge

stay within the cofibrant fragment.

Key facts

- 0. Existence of the constructive Kan-Quillen model structure.
- 1. $A, B \in$ **SSet**, A cofibrant, B Kan \Rightarrow B^A Kan.
- 2. $p: A \rightarrow X$ Kan fibration, A cofibrant \Rightarrow the right adjoint to pullback

$$\Pi_p: \mathbf{SSet}_{/A} \to \mathbf{SSet}_{/X}$$

preserves Kan fibrations.

3. There is a Kan fibration $\pi_c : \tilde{U}_c \to U_c$, with U_c cofibrant Kan complex, that weakly classifies small Kan fibrations between cofibrant simplicial sets

4. The fibration $\pi_c : \tilde{U}_c \to U_c$ is univalent.

Function types

Let A, B be cofibrant Kan complexes.

Step 1. Consider B^A , which is a Kan complex by (1). We have

$$\mathsf{app}:B^{\mathsf{A}} imes \mathsf{A} o \mathsf{B}$$

universal, i.e. such that

$$X \xrightarrow{f} B^{A}$$
$$X \times A \xrightarrow{f \times 1_{A}} B^{A} \times A \xrightarrow{app} B$$

is a bijection. Its inverse is written

$$\frac{X \times A \xrightarrow{b} B}{X \xrightarrow{\lambda(b)} B^A}$$

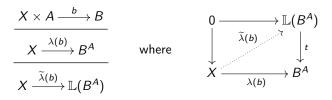
In general, B^A is not cofibrant.

Step 2. Let $\mathbb{L}(B^A)$ be a cofibrant replacement of B^A , with $t: \mathbb{L}(B^A) \to B^A$ in $\mathbf{W} \cap \mathbf{F}$

Now $\mathbb{L}(B^A)$ is cofibrant Kan complex. We have

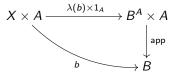
$$\widetilde{\mathsf{app}}: \ \mathbb{L}(B^{A}) \times A \xrightarrow{t \times 1_{A}} B^{A} \times A \xrightarrow{\mathsf{app}} B^{A} \times B^$$

For $b: X \times A \rightarrow B$, with X cofibrant Kan complex, we get

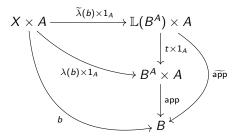


Judgemental β -rule

For standard exponential



For its cofibrant replacement

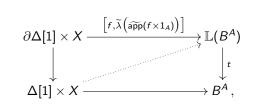


Propositional η -rule

by

For $f: X \to \mathbb{L}(B^A)$, we have a homotopy

 $\eta_f: f \sim \widetilde{\lambda}(\widetilde{\operatorname{app}}(f \times 1_A)),$



where bottom map is given by η -rule for standard exponential.

The universe (I)

Step 1. Construct a Kan fibration $\pi: \tilde{U} \to U$ which classifies small Kan fibrations with cofibrant fibers.

 $U_n = \{p : A \rightarrow \Delta[n] \mid p \text{ small fibration}, A \text{ cofibrant}\}$

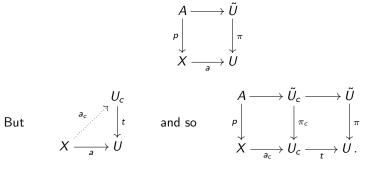
Step 2.

- Let U_c = L(U) be the cofibrant replacement of U, with t: U_c → U in W ∩ F
- Pullback

The universe (II)

Proposition. The map $\pi_c: \tilde{U}_c \to U_c$ classifies small Kan fibrations between cofibrant objects.

Proof. Let $p: A \rightarrow X$ be such a map. Since p has cofibrant fibers, we have



Fibrancy and univalence of the universe

Step 1. Prove equivalence extension property.

Key Lemma. Let f: Y → X be a cofibration between cofibrant objects. If q: B → Y has cofibrant domain, then so does Π_f(q): Π_Y(B) → X.

Step 2. Prove U Kan complex, so that U_c is a cofibrant Kan complex.

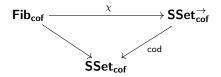
Familiar argument, via instance of equivalence extensional property.

Step 3. Prove π univalent, so that π_c univalent.

- Equivalence extension property
- ► Diagram-chasing, using 3-for-2 for **W**.

Coherence issues

The comprehension category



It is not split and satisfies only weak versions of stability conditions.

Open problem. Can we construct a strict model from this?

None of the known strictification methods seems to apply constructively.

Future work

- Solve coherence problem.
- \blacktriangleright Generalise from ${\bf Set}$ to a Grothendieck topos ${\cal E}$
 - Model structure on simplicial sheaves $[\Delta^{\mathrm{op}}, \mathcal{E}]$
 - Connections to higher topos theory
- ► A simplicial type theory, extracted from the comprehension category, in which univalence axiom is provable.

References

- [H1] S. Henry Weak model structures in classical and constructive mathematics ArXiv, 2018.
- [H2] S. Henry A constructive account of the Kan-Quillen model structure and of Kan's Ex $^{\infty}$ functor ArXiv, 2019
- [GSS] N. Gambino and K. Szumiło and C. Sattler The constructive Kan-Quillen model structure: two new proofs ArXiv, 2019
 - [GH] N. Gambino and S. Henry Towards a constructive simplicial model of Univalent Foundations ArXiv, 2019