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Our aim is

to use fundamental notions of BST, an informal theory that
somehow complements Bishop’s theory of sets, in the theory of
Bishop spaces, a function-theoretic approach to constructive
topology.



Motivation I
I The theory of sets underlying (BISH) was only sketched in

Chapter 3 of [1]. Since Bishop’s central aim in [1] was to show
that a large part of advanced mathematics can be done within
a constructive and computational framework that does not
contradict the classical practice, the inclusion of a detailed
account of the set-theoretic foundations of BISH could be
against the effective delivery of his message (P. Halmos: Naive
Set Theory, 1960).

I The BCMT in [5], was very different from the BMT in [1], and
the inclusion of an enriched version of the former into [6],
affected the corresponding Chapter 3 in two main respects.
First, the inductively defined notion of the set of Borel sets
generated by a given family of complemented subsets of a set
X was excluded, as unnecessary, and, second, the operations on
the complemented subsets of a set X were defined differently,
and in accordance to the needs of the new measure theory.

Yet, in both books many issues were left untouched, a fact that
often was a source of confusion.



Motivation II

I In BCMT P(X ) was treated as a set, while in BMT Bishop
generally avoided the powerset by using appropriate families of
subsets instead (Zeuner). In later works of Bridges and
Richman [7] [9], P(X ) was clearly used as a set, partially in
contrast to the predicative spirit of [1].

I The concept of a family of sets indexed by a (discrete) set, was
asked to be defined in [1] (Exercise 2, p. 72), and a definition,
attributed to Richman, was given in [6] (Exercise 2, p. 78). An
elaborate study though, of this concept within BISH is missing,
despite its extensive use in BMT and in constructive algebra.

I In [9] Richman introduced the more general notion of a family
of objects of a category indexed by some set, but the
categorical component in the resulting mixture of Bishop’s set
theory and category theory was not explained in constructive
terms, as it was done in the the formulation of category theory
in HoTT (Chapter 9 in [13]).



Motivation III

I Bishop discussed the formal aspects of BISH in [4], where Σ, a
variant of Gödel’s T , was proposed as a formal system for it.
There he also sketched very briefly the implementation of Σ
into Algol (Buffalo-meeting, August 1968) .

I In his unpublished work [2] he introduced a version of
dependent type theory with one universe to formalise BISH.
He also wrote an unpublished paper [3] on the implementation
of his type theory into Algol. I think that this is done after Σ.



Bi67, p. 65 and BB85, p. 70

an element u of
⋂

t∈T λ(t) is a finite routine which associates an
element xt of λ(t) with each element t of T , such that
it(xt) = it′(xt′) whenever t, t ′ ∈ T .



Motivation IV

I The various set-theoretic formalisations of BISH (Myhill,
Friedman, Aczel, Feferman, Beeson, and Greenleaf) were
influenced by ZF, and are“top-down” approaches to BISH.

I The type-theoretic interpretation of Bishop’s set theory into
the theory of setoids (Palmgren) is the standard way to
understand Bishop sets. The identity type of MLTT expresses,
in a proof-relevant way, the existence of the least reflexive
relation on a type, a fact with no counterpart in Bishop’s set
theory. The free setoid on a type is definable, and the
presentation axiom in setoids is provable.

I In MLTT the families of types over a type I is the type I → U ,
which is in U ′. In Bishop’s set theory the set-character of the
totality of all families of sets indexed by some set I is
questionable from the predicative point of view.

I In MLTT no distinction between sets and classes, and between
operations and functions.



Motivation V

I BST is an informal, constructive theory of totalities and
assignment routines that serves as a completion of Bishop’s set
theory.

I Its aim is to fill in the “gaps” in Bishop’s account of the set
theory underlying BISH, and,

I to serve as an intermediate step between Bishop’s informal set
theory and a suitable i.e., an adequate and faithful, in the sense
of Feferman, formalisation of BISH.

To assure faithfulness, we use concepts or principles that appear,
explicitly or implicitly, in BISH.



Overview

I Fundamental notions of BST.

I Families of Bishop sets indexed by some set I and the
family-maps between them. The corresponding

∑
-and

∏
-sets

are introduced.

I Families of Bishop sets indexed by some directed set (I ,4) and
the family-maps between them. The corresponding

∑4-and∏4-sets are introduced.

I Basic facts on Bishop spaces.

I Direct spectrum of Bishop spaces, and a canonical Bishop
topology on the direct sum of Bishop spaces.

I Direct limit Lim
→
Fi of a direct spectrum of Bishop spaces,

universal property, the cofinality theorem for direct limits.

I Inverse limit Lim
←
Fi of a contravariant direct spectrum of

Bishop spaces, universal property.

I Duality principle between the inverse and direct limits of
Bishop spaces.



Primitives of BST I

I (s, t).

I equality := between terms.

I pr1(s, t) := s and pr2(s, t) := t.

I N.

I Any other totality X is defined through a
“membership-formula” x ∈ X .

I A defined equality on X is a formula x =X y that satisfies the
properties of an equivalence relation.

I If X is a set and Y is a totality, an assignment routine
α : X  Y from X to Y is a finite routine assigning an
element y of Y , to each given element x of X . In this case we
write α(x) := y .

I If X ,Y are sets, an assignment routine f : X  Y is a
function, if f (x) =Y f (x ′), for every x , x ′ ∈ X , such that
x =X x ′. In this case we write f : X → Y .



Primitives of BST II

I F(X ,Y ) with pointwise equality is a set (function
extensionality).

I The (univalent) universe of sets V0 with equality

X =V0 Y :⇔ ∃f ∈F(X ,Y )∃g∈F(Y ,X )

(
g ◦ f = idX & f ◦ g = idY

)
is a class.

I If I is a set and µ0 : I  V0, a dependent assignment routine
over µ0 is an assignment routine µ1 that assigns to each
element i in I an element µ1(i) in µ0(i). We denote such a
routine by

µ1 :
k

i∈I
µ0(i),

and their totality by A(I , µ0). If µ1, ν1 :
c

i∈I µ0(i), we define

µ1 =A(I ,µ0) ν1 :⇔ ∀i∈I
(
µ1(i) =µ0(i) ν1(i)

)
.



Primitives of BST III

I If X is a set, a subset of X is a pair (A, iA), where A is a set
and iA : A ↪→ X . If (A, iA) and (B, iB) are subsets of X , A is a
subset of B, A ⊆ B, if there is f : A→ B sttfdc

A B

X .

f

iA iB

In this case we write f : A ⊆ B, and f is an embedding.
Usually we write A instead of (A, iA).

I The totality of the subsets of X is the powerset P(X ), where
(A, iA) =P(X ) (B, iB) :⇔ A ⊆ B & B ⊆ A. If f : A ⊆ B and
g : B ⊆ A, we write (f , g) : A =P(X ) B.



Primitives of BST IV

Since the membership condition of P(X ) requires quantification
over V0, the totality P(X ) is a class.

A B

X .

f

g

iA iB

(f , g) : A =P(X ) B ⇒ (f , g) : A =V0 B.

If (f ′, g ′) : A =P(X ) B, then f = f ′ and g = g ′.



Primitives of BST V
If P(x) is an extensional property on X i.e.,

∀x ,y∈X
(
x =X y ⇒ (P(x)⇒ P(y))

)
,

the set XP generated by P is defined by the membership-condition

x ∈ XP :⇔ x ∈ X & P(x),

and the equality of XP is inherited from the equality of X . Usually,
we use the notation

{x ∈ X | P(x)} := XP .

If X ,Y are sets, their product X × Y is defined by

z ∈ X × Y :⇔ ∃x∈X∃y∈Y
(
z := (x , y)

)
,

and its equality is defined as usual.

If X is a set, then the property P(x , y) :⇔ x =X y is an extensional
property on X × X that generates the following subset of X × X

D(X ) :=
{

(x , y) ∈ X × X | x =X y
}
,

which we call the diagonal of X .



If I is a set, a family of sets indexed by I is a pair Λ := (λ0, λ1),
where λ0 : I  V0, and

λ1 :
k

(i ,j)∈D(I )

F
(
λ0(i), λ0(j)

)
,

such that, if λ1(i , j) := λij , for every (i , j) ∈ D(I ),

(a) For every i ∈ I , we have that λii := idλ0(i).

(b) If i =I j and j =I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λjk

λij λik

If i =I j , we call the function λij the transport map from λ0(i) to
λ0(j), and we call λ1 the modulus of function-likeness of λ0:

(λij , λji ) : λ0(i) =V0 λ0(j).



An I -family of sets is called an I -set of sets, if

∀i ,j∈I
(
λ0(i) =V0 λ0(j)⇒ i =I j

)
.

Functions on I are lifted to functions on λ0I , where

z ∈ λ0I :⇔ ∃i∈I
(
z := λ0(i)

)
λ0(i) =λ0I λ0(j) :⇔ λ0(i) =V0 λ0(j).



Let Λ := (λ0, λ1) and M := (µ0, µ1) be I -families of sets. A
family-map from Λ to M is a d.a.r.

Ψ :
k

i∈I
F
(
λ0(i), µ0(i)

)
such that for every (i , j) ∈ D(I ) tfdc

µ0(i) µ0(j).

λ0(j)λ0(i)

µij

λij

Ψi Ψj

MapI (Λ,M) with Ψ =MapI (Λ,M) Ξ :⇔ ∀i∈I
(
Ψi =F(λ0(i),µ0(i)) Ξi

)
.

Ψ : Λ⇒ M denotes an element of MapI (Λ,M).



λ0(i) λ0(j)

µ0(j)µ0(i)

ν0(i) ν0(j),

λij

Ψj

µij

Ψi

Ξi Ξj

νij

(Ξ ◦Ψ)i (Ξ ◦Ψ)j

IdΛ :
k

i∈I
F
(
λ0(i), λ0(i)

)
, IdΛ(i) := idλ0(i), i ∈ I .

Fam(I ) the totality of I -families of sets with equality

Λ =Fam(I ) M :⇔ ∃Φ∈MapI (Λ,M)∃Ξ∈MapI (M,Λ)

(
Φ◦Ξ = idM & Ξ◦Φ = idΛ

)
.

If Fam(I ) was a set, the constant I -family with value Fam(I ) would
be defined though a totality in which it belongs to.



Let Λ := (λ0, λ1) be an I -family of sets.

The exterior union
∑

i∈I λ0(i) of Λ is defined by

w ∈
∑
i∈I

λ0(i) :⇔ ∃i∈I∃x∈λ0(i)

(
w := (i , x)

)
,

(i , x) =∑
i∈I λ0(i) (j , y) :⇔ i =I j & λij(x) =λ0(j) y .

The totality
∏

i∈I λ0(i) of dependent functions over Λ is defined by

Φ ∈
∏
i∈I

λ0(i) :⇔ Φ ∈ A(I , λ0) & ∀(i ,j)∈D(I )

(
Φj =λ0(j) λij(Φi )

)
,

and it is equipped with the equality of A(I , λ0).



Proposition

Let Λ := (λ0, λ1), M := (µ0, µ1) ∈ Fam(I ), and Ψ ∈ MapI (Λ,M).

(i) For every i ∈ I the a.r. eΛ
i : λ0(i) 

∑
i∈I λ0(i), defined by

x 7→ (i , x), is an embedding of λ0(i) into
∑

i∈I λ0(i).

(ii) The a.r. ΣΨ :
∑

i∈I λ0(i) 
∑

i∈I µ0(i),

ΣΨ(i , x) := (i ,Ψi (x)),

is a function from
∑

i∈I λ0(i) to
∑

i∈I µ0(i), s.t. for every i ∈ I tfdc

∑
i∈I λ0(i)

∑
i∈I µ0(i).

µ0(i)λ0(i)

ΣΨ

Ψi

eΛ
i eMi

(iii) If every Ψi is an embedding, then Σψ is an embedding.



Proposition

Let Λ := (λ0, λ1), M := (µ0, µ1) ∈ Fam(I ), and Ψ ∈ MapI (Λ,M).

(i) For every i ∈ I the a.r. πΛ
i :
∏

i∈I λ0(i) λ0(i), defined by
Θ 7→ Θi , is a function from

∏
i∈I λ0(i) to λ0(i).

(ii) The a.r. ΠΨ :
∏

i∈I λ0(i) 
∏

i∈I µ0(i),

[ΠΨ(Θ)]i := Ψi (Θi ),

is a function from
∏

i∈I λ0(i) to
∏

i∈I µ0(i), s.t. for every i ∈ I tfdc

∏
i∈I λ0(i)

∏
i∈I µ0(i).

µ0(i)λ0(i)

ΠΨ

Ψi

πΛ
i πMi

(iii) If every Ψi is an embedding, then ΠΨ is an embedding.



I Distributivity of
∏

over
∑

in [10].

I Yoneda lemma in [12].

I Spectra of Bishop spaces, canonical Bishop topology on the
corresponding sums and products of Bishop spaces.



I A direct family of sets is a variation of the notion of a
set-indexed family of sets.

I A family of sets over a partial order is also used in the
definition of a certain Kripke model for intuitionistic predicate
logic, and the corresponding transport maps λ4ij are called
transition functions (see TvD88, p. 85).

I Let (I ,4I ) be a directed set i.e., i 4I j is a binary relation on I
which is extensional i.e.,

∀i ,j∈I
(
i =I i

′ & j =I j
′ & i 4 j ⇒ i ′ 4 j ′

)
,

which is also reflexive, transitive, and

∀i ,j∈I∃k∈I
(
i 4I k & j 4I k

)
.

Since i 4I j is extensional, it generates the following
extensional subset of I × I

4 (I ) :=
{

(i , j) ∈ I × I | i 4I j
}
.



A direct family of sets indexed by (I ,4I ) is a pair Λ4 := (λ0, λ
4
1 ),

where λ0 : I  V0, and

λ41 :
k

(i ,j)∈4(I )

F
(
λ0(i), λ0(j)

)
, λ41 (i , j) := λ4ij , (i , j) ∈4 (I ),

such that the following conditions hold:

(a) For every i ∈ I , we have that λ4ii := idλ0(i).

(b) If i 4I j and j 4I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λ4jk

λ4ij λ4ik



Ψ : Λ4 ⇒ M4 a direct family-map

Map(I ,4I )
(Λ4,M4)

Fam(I ,4I )

The direct sum
∑4

i∈I λ0(i) over Λ4 is the totality
∑

i∈I λ0(i)
equipped with the equality

(i , x) =∑4
i∈I λ0(i)

(j , y) :⇔ ∃k∈I
(
i 4 k & j 4 k & λ4ik(x) =λ0(k) λ

4
jk(y)

)
.

The totality
∏4

i∈I λ0(i) of dependent functions over Λ4 is defined by

Φ ∈
4∏
i∈I

λ0(i) :⇔ Φ ∈ A(I , λ0) & ∀(i ,j)∈4(I )

(
Φj =λ0(j) λ

4
ij (Φi )

)
,

and it is equipped with the equality of A(I , λ0). The totality∏<
i∈I λ0(i) is defined similarly.

Similar propositions for eΛ4

i ,Σ4Ψ, πΛ4

i ,Π4Ψ.



A Bishop space is a pair F := (X ,F ), where F ⊆ F(X ), which is
called a Bishop topology that satisfies the following conditions:

(BS1) If a ∈ R, then aX ∈ F .

(BS2) If f , g ∈ F , then f + g ∈ F .

(BS3) If f ∈ F and φ ∈ Bic(R), then φ ◦ f ∈ F

X R

R.

f

F 3 φ ◦ f φ ∈ Bic(R)

(BS4) F = F .

The least topology
∨

F0 generated by some F0 ⊆ F(X ), is defined
by turning the above clauses to inductive rules plus

f0 ∈ F0

f0 ∈
∨
F0
.

Corresponding induction principle.



If F := (X ,F ) and G = (Y ,G ) are Bishop spaces, a function
h : X → Y is called a Bishop morphism, if ∀g∈G (g ◦ h ∈ F )

X Y

R.

h

F 3 g ◦ h g ∈ G

We denote by Mor(F ,G) the set of Bishop morphisms from F to G.
If h ∈ Mor(F ,G), the induced mapping h∗ : G → F from h is
defined, for every g ∈ G , by h∗(g) := g ◦ h.

∨
-lifting of morphisms

X Y

R.

h

F 3 g0 ◦ h g0 ∈ G0



h ∈ Mor(F ,G) is a Bishop isomorphism if and only if it is open i.e.,

∀f ∈F∃g∈G
(
f = g ◦ h

)
.

According to the
∨

-lifting of openness, if h ∈ Mor(F ,G) is a
surjection, and if F =

∨
F0 it suffices to prove the openness

property only for the subbase F0 of F i.e.,

∀f0∈F0∃g∈G
(
f0 = g ◦ h

)
⇒ ∀f ∈∨F0

∃g∈G
(
f = g ◦ h

)
,



F×G :=
∨

[{f ◦ π1, | f ∈ F} ∪ {g ◦ π2 | g ∈ G}] =:

g∈G∨
f ∈F

f ◦π1, g◦π2

F|A =
∨
{f|A | f ∈ F} =:

∨
f ∈F

f|A,

F → G :=
∨{

φx ,g | x ∈ X , g ∈ G
}

:=

g∈G∨
x∈X

φx ,g ,

where π1 : X × Y → X and π2 : X × Y → Y are the projections on
X and Y , respectively, f|A := f ◦ iA

A X R,
iA f

f|A

and φx ,g : Mor(F ,G)→ R is defined by

φx ,g (h) = g(h(x)).



∨
F0 ×

∨
G0 :=

∨
[{f0 ◦ π1, | f0 ∈ F0} ∪ {g0 ◦ π2 | g0 ∈ G0}]

=:

g0∈G0∨
f0∈F0

f0 ◦ π1, g0 ◦ π2,

(∨
F0

)
|A =

∨
{f0|A | f0 ∈ F0} =:

∨
f0∈F0

f0|A,

F →
∨

G0 =
∨{

φx ,g0 | x ∈ X , g0 ∈ G0

}
:=

g0∈G0∨
x∈X

φx ,g0 .



Let (I ,4) be a directed set, and let Λ4 := (λ0, λ
4
1 ),

M4 := (µ0, µ
4
1 ) be (I ,4)-families of sets.

A family of Bishop topologies associated to Λ4 is a pair
ΦΛ4

:=
(
φΛ4

0 , φΛ4

1

)
, where φΛ4

0 : I  V0 and

φΛ4

1 :
k

(i ,j)∈4(I )

F
(
φΛ4

0 (j), φΛ4

0 (i)
)

such that the following conditions hold:

(i) φΛ4

0 (i) := Fi ⊆ F(λ0(i),R), and Fi := (λ0(i),Fi ) is a Bishop
space, for every i ∈ I .
(ii) λ4ij ∈ Mor(Fi ,Fj), for every (i , j) ∈ 4 (I ).

(iii) φΛ4

1 (i , j) :=
(
λ4ij
)∗

, for every (i , j) ∈ 4 (I ), where, if f ∈ Fj ,(
λ4ij
)∗

(f ) := f ◦ λ4ij .

The structure S4 := (λ0, λ
4
1 ;φΛ4

0 , φΛ4

1 ) is called a direct spectrum
over (I ,4) with Bishop spaces (Fi )i∈I and Bishop morphisms
(λ4ij )(i ,j)∈4(I ).



I If T4 := (µ0, µ1, φ
M4

0 , φM
4

1 ) is an (I ,4)-spectrum with Bishop
spaces (Gi )i∈I and Bishop morphisms (µ4ij )(i ,j)∈ 4(I ), a direct

spectrum-map Ψ from S4 to T4 is a direct family-map
Ψ : Λ4 ⇒ M4.

I A direct spectrum-map Ψ : S4 ⇒ T≺ is called continuous, if
∀i∈I

(
Ψi ∈ Mor(Fi ,Gi )

)
.

I A contravariant direct spectrum S< := (λ0, λ
<
1 ;φΛ<

0 , φΛ<

1 ) over
(I ,4), and a contravariant direct spectrum-map Ψ : Λ< ⇒ M<

are defined similarly.



Remark
Let (I ,4) be a directed set and S4 := (λ0, λ1;φΛ4

0 , φΛ4

1 ) an
(I ,4)-spectrum with Bishop spaces (Fi )i∈I and Bishop morphisms
(λ4ij )(i ,j)∈4(I ). If Θ ∈

∏<
i∈I Fi , the assignment routine

fΘ :
(∑4

i∈I λ0(i)
)
 R, defined by

fΘ(i , x) := Θi (x),

is a function from
∑4

i∈I λ0(i) to R.

Proof.
Let (i , x) =∑4

i∈I λ0(i)
(j , y)⇔ ∃k<i ,j

(
λ4ik(x) =λ0(k) λ

4
jk(y)

)
. Since

Θi = φ<ki (Θk) := (λ4ik)∗(Θk) := Θk ◦ λ4ik ,

and similarly Θj = Θk ◦ λ4jk , we have that

Θi (x) =
[
Θk ◦ λ4ik

]
(x) := Θk

(
λ4ik(x)

)
= Θk

(
λ4jk(y)

)
:=
[
Θk ◦ λ4jk

]
(y) = Θj(y).



Let (I ,4) be a directed set and S4 := (λ0, λ1;φΛ4

0 , φΛ4

1 ) an
(I ,4)-spectrum with Bishop spaces (Fi )i∈I and Bishop morphisms
(λ4ij )(i ,j)∈4(I ). The Bishop space

4∑
i∈I
Fi :=

( 4∑
i∈I

λ0(i),
4∑
i∈I

Fi

)
,

4∑
i∈I

Fi :=
∨

Θ∈
∏<

i∈I Fi

fΘ,

is called the sum Bishop space of S4.

If S< is a contravariant direct spectrum over (I ,4), the sum Bishop
space of S< is defined dually.



Proposition

Let S4 := (λ0, λ
4
1 ;φΛ4

0 , φΛ4

1 ) and T4 := (µ0, µ
4
1 ;φM

4

0 , φM
4

1 ) be
direct spectra over (I ,4), and let Ψ : S4 ⇒ T4.

(i) If i ∈ I , then eΛ4

i ∈ Mor
(
Fi ,
∑4

i∈I Fi

)
.

(ii) If Ψ is continuous, then Σ4Ψ ∈ Mor
(∑4

i∈I Fi ,
∑4

i∈I Gi
)
.

Proof.
(i) ∀

Θ∈
∏<

i∈I Fi

(
fΘ ◦ eΛ4

i ∈ Fi
)
. If x ∈ λ0(i), then(

fΘ ◦ eΛ4

i

)
(x) := fΘ(i , x) := Θi (x), hence fΘ ◦ eΛ4

i := Θi ∈ Fi .
(ii)

∀
H∈

∏<
i∈I Gi

(
gH ◦ Σ4Ψ ∈

4∑
i∈I

Fi

)
.

If i ∈ I and x ∈ λ0(i), we have that H∗ ∈
∏<

i∈I Fi , and

gH ◦ Σ4Ψ := fH∗ ∈
∑4

i∈I Fi(
gH◦Σ4Ψ

)
(i , x) := gH(i ,Ψi (x)) := Hi (Ψi (x)) := (Hi◦Ψi )(x) := fH∗(i , x).



Let X be a set and ωX : X  V0 the assignment routine defined by

ωX (x) := {x ′ ∈ X | x ′ =X x},

for every x ∈ X . If X is clear from the context, we write ω instead
of ωX . The totality ωX is defined by

z ∈ ωX :⇔ ∃x∈X
(
z := ωX (x)

)
,

ωX (x) =ωX ωX (x) :⇔ ωX (x) =P(X ) ωX (x ′).

Clearly, ωX (x) =P(X ) ωX (x ′)⇔ x =X x ′, hence ω is an X -set of
subsets of X .



Let (I ,4) be a directed set and S4 := (λ0, λ
4
1 ;φΛ4

0 , φΛ4

1 ) a direct
spectrum over (I ,4). If ω :

∑4
i∈I λ0(i) P(

∑4
i∈I ) is defined by

ω(i , x) :=

{
(j , y) ∈

4∑
i∈I

λ0(i) | (j , y) =∑4
i∈I λ0(i)

(i , x)

}
,

for every (i , x) ∈
∑4

i∈I λ0(i), the direct limit set Lim
→
λ0(i) of S4 is

defined by

Lim
→
λ0(i) := ω

4∑
i∈I

λ0(i).

ω(i , x) =Lim
→
λ0(i) ω(j , y) :⇔ ω(i , x) =

P
(∑4

i∈I λ0(i)
) ω(j , y)

⇔ (i , x) =∑4
i∈I λ0(i)

(j , y).



Remark
Let (I ,4) be a directed set and S4 := (λ0, λ

4
1 ;φΛ4

0 , φΛ4

1 ) a direct
spectrum over (I ,4). For every i ∈ I , the assignment routine
ωi : λ0(i) Lim

→
λ0(i), defined by ωi (x) := ω(i , x), for every

x ∈ λ0(i), is a function from λ0(i) to Lim
→
λ0(i).

Proof.
If x , x ′ ∈ λ0(i) such that x =λ0(i) x

′, then

ωi (x) =Lim
→
λ0(i) ωi (x

′) :⇔ ω(i , x) =Lim
→
λ0(i) ω(i , x ′)

⇔ (i , x) =∑4
i∈I λ0(i)

(i , x ′)

:⇔ ∃k∈I
(
i 4 k & λ4ik(x) =λ0(k) λ

4
ik(x ′)

)
,

which holds, since λ4ik is a function, and hence if x =λ0(i) x
′, then

λ4ik(x) =λ0(k) λ
4
ik(x ′).



Let (I ,4) be a directed set and S4 := (λ0, λ
4
1 ;φΛ4

0 , φΛ4

1 ) a directed
spectrum over (I ,4). The direct limit Bishop space of S4 is the
Bishop space

Lim
→
Fi :=

(
Lim
→
λ0(i),Lim

→
Fi
)
,

Lim
→

Fi :=
∨

Θ∈
∏<

i∈I Fi

ωfΘ,

(
ωfΘ

)
ω(i , x) := fΘ(i , x) := Θi (x).



Proposition (Universal property of the direct limit)

If S4 := (λ0, λ
4
1 ;φΛ4

0 , φΛ4

1 ) is a direct spectrum over (I ,4) with
Bishop spaces (Fi )i∈I and Bishop morphisms (λ4ij )(i ,j)∈4(I ), its
direct limit Lim

→
Fi satisfies the universal property of direct limits i.e.,

(i) For every i ∈ I , we have that ωi ∈ Mor(Fi ,Lim→
Fi ).

(ii) If i 4 j , the following left diagram commutes

Lim
→
λ0(i)

λ0(j)λ0(i) λ0(i) λ0(j).

Y

ωjωi

λ4ij

εjεi

λ4ij



(iii) If G := (Y ,G ) is a Bishop space and
εi : λ0(i)→ Y ∈ Mor(Fi ,G), for every i ∈ I , such that if i 4 j , the
previous right diagram commutes, there is a unique function
h : Lim

→
λ0(i)→ Y ∈ Mor(Lim

→
Fi ,G) that makes the following

diagrams commutative

Y

λ0(j),λ0(i)

Lim
→
λ0(i)

εjεi

λ4ij ωjωi

h



Theorem
Let S4 := (λ0, λ

4
1 ;φΛ4

0 , φΛ4

1 ) and T4 := (µ0, µ
4
1 ;φM

4

0 , φM
4

1 ) be
direct spectra over (I ,4), and let Ψ : S4 ⇒ T4.

(i) There is a unique function Ψ→ : Lim
→
λ0(i)→ Lim

→
µ0(i) such

that, for every i ∈ I , the following diagram commutes

Lim
→
λ0(i) Lim

→
µ0(i).

µ0(i)λ0(i)

Ψ→

Ψi

ωS4,i ωT4,i

(ii) If Ψ is continuous, then Ψ→ ∈ Mor(Lim
→
Fi ,Lim→

Gi ).

(iii) If Ψi is an injection, for every i ∈ I , then Ψ→ is an injection.



Proposition

If S4 := (λ0, λ
4
1 ;φΛ4

0 , φΛ4

1 ), T4 := (µ0, µ
4
1 ;φM

4

0 , φM
4

1 ) and

U4 := (ν0, ν
4
1 ;φN

4

0 , φN
4

1 ) are direct spectra over (I ,4), and if
Ψ : S4 ⇒ T4 and Ξ : T4 ⇒ U4, then we have that

(Ξ ◦Ψ)→ := Ξ→ ◦Ψ→

λ0(i) µ0(i)

Lim
→
λ0(i) Lim

→
µ0(i)

ν0(i)

Lim
→
ν0(i).

Ψi Ξi

Ξ→Ψ→

ωS4,i ωT4,i ωU4,i

(Ξ ◦Ψ)→

(Ξ ◦Ψ)i



Let (I ,4) be a directed set and (J, e) ⊆ I , and let
j 4 j ′ :⇔ e(j) 4 e(j ′), for every j , j ′ ∈ J. We say that J is cofinal in
I , if there is a function cofJ : I → J, which we call a modulus of
cofinality of J in I , that satisfies the following conditions:

(i) ∀j∈J
(
cofJ(e(j)) =J j

)

I

J

J.

e

cofJ

idJ

(ii) ∀i ,i ′∈I
(
i 4 i ′ ⇒ cofJ(i) 4 cofJ(i ′)

)
.

(iii) ∀i∈I
(
i 4 e(cofJ(i))

)
.

We denote the fact that J is cofinal in I by (J, e, cofJ) ⊆cof I , or,
simpler, by J ⊆cof I .



If (I ,4) is directed and (J, e, cofJ) ⊆cof I , (J,4) is directed.

Proposition

Let S4 := (λ0, λ
4
1 ;φΛ4

0 , φΛ4

1 ) be a direct spectrum over (I ,4), and
(J, e, cofJ) ⊆cof I . The relative spectrum of S4 to J is

S4|J :=
(
(λ0)|J , (λ1)4|J ;φ

Λ4
|J

0 , φ
Λ4
|J

1

)
,

where (λ0)|J : J  V0 is defined by (λ0)|J(j) := λ0(e(j)), and

(λ1)4|J :
k

(j ,j ′)∈4(J)

F
(
λ0(e(j)), λ0(e(j ′))

)
, (λ1)4|J(j , j ′) := λ4jj ′ := λ4e(j)e(j ′),

and φ
Λ4
|J

0 : J  V0 is defined by φ
Λ4
|J

0 (j) := Fj := Fe(j) := φΛ4

0 (e(j))

φ
Λ4
|J

1 :
k

(j ,j ′)∈4(J)

F
(
Fe(j ′),Fe(j)

)
,

φ
Λ4
|J

1 (j , j ′) := φΛ4

1 (e(j), e(j ′)) := (λ4e(j)e(j ′))∗



Theorem
Let S4 := (λ0, λ

4
1 ;φΛ4

0 , φΛ4

1 ) be a direct spectrum over (I ,4),

(J, e, cofJ) cofinal in I , and S4|J :=
(
(λ0)|J , (λ1)4|J ;φ

Λ4
|J

0 , φ
Λ4
|J

1

)
the

relative spectrum of S4 to J. Then

Lim
→
Fj ' Lim

→
Fi .

Proof.
We define the assignment routine φ : Lim

→
λ0(j) Lim

→
λ0(i) by

φ
(
ω
S4
|J

(j , y)
)

:= ωS4(e(j), y),

Lim
→
λ0(j) Lim

→
λ0(i)

λ0(j)

φ

ω
S4
|J ,j

ωS4,j

where, if j ∈ J and y ∈ λ0(j), we have that

ω
S4
|J

(j , y) :=
{

(j ′, y ′) ∈
4∑
j∈J

λ0(j) | (j ′, y ′) =∑4
j∈J λ0(j)

(j , y)
}
,

ωS4(e(j), y) :=
{

(i , x) ∈
4∑
i∈I

λ0(i) | (i , x) =∑4
i∈I λ0(i)

(e(j), y)
}
.



If S< := (λ0, λ
<
1 ;φΛ<

0 , φΛ<

1 ) is a contravariant (I ,4)-spectrum with
Bishop spaces (Fi )i∈I and Bishop morphisms (λ<ji )(i ,j)∈4(I ), the

inverse limit of S< is the Bishop space

Lim
←
Fi :=

(
Lim
←
λ0(i), Lim

←
Fi
)
,

Lim
←
λ0(i) :=

<∏
i∈I

λ0(i) & Lim
←

Fi :=

f ∈Fi∨
i∈I

f ◦ πΛ<

i .

We write πi instead of πΛ<

i for the function

πΛ<

i :
∏<

i∈I λ0(i)→ λ0(i), which is defined by the rule Φ 7→ Φi .



Proposition (Universal property of the inverse limit)

If S< := (λ0, λ
<
1 ;φΛ<

0 , φΛ<

1 ) is a contravariant direct spectrum over
(I ,4) with Bishop spaces (Fi )i∈I and Bishop morphisms
(λ<ji )(i ,j)∈4(I ), its inverse limit Lim

←
Fi satisfies the universal property

of inverse limits i.e.,

(i) For every i ∈ I , we have that πi ∈ Mor(Lim
←
Fi ,Fi ).

(ii) If i 4 j , the following left diagram commutes∏<
i∈I λ0(i)

λ0(j)λ0(i) λ0(i) λ0(j).

Y

πjπi

λ<ji

$j$i

λ4ji



(iii) If G := (Y ,G ) is a Bishop space and
$i : Y → λ0(i) ∈ Mor(G,Fi ), for every i ∈ I , such that if i 4 j ,
the above right diagram commutes, then there is a unique function
h : Y →

∏
i∈I λ0(i) ∈ Mor(G,Lim

←
Fi ) that makes the following

diagrams commutative

Y

λ0(j),λ0(i)

∏
i∈I λ0(i)

$j$i

λ<ji πjπi

h



Theorem
Let S< := (λ0, λ

<
1 ;φΛ<

0 , φΛ<

1 ) be a contravariant (I ,4)-spectrum
with Bishop spaces (Fi )i∈I and Bishop morphisms (λ<ji )(i ,j)∈4(I ),

T< := (µ0, µ1;φM
<

0 , φM
<

1 ) a contravariant (I ,4)-spectrum with
Bishop spaces (Gi )i∈I and Bishop morphisms (µ<ji )(i ,j)∈4(I ), and let

Ψ : S< ⇒ T<.

(i) There is a unique function Ψ← : Lim
←
λ0(i)→ Lim

←
µ0(i) such

that, for every i ∈ I , the following diagram commutes

Lim
←
λ0(i) Lim

←
µ0(i).

µ0(i)λ0(i)

Ψ←

Ψi

πS
<

i πT
<

i

(ii) If Ψ is continuous, then Ψ← ∈ Mor(Lim
←
Fi ,Lim←

Gi ).

(iii) If Ψi is an injection, for every i ∈ I , then Ψ← is an injection.



Proposition

Let F := (X ,F ),G := (Y ,G ) and H := (Z ,H) be Bishop spaces,
and let λ ∈ Mor(G,H), µ ∈ Mor(H,G). If

λ+ : Mor(H,F)→ Mor(G,F) λ+(φ) := φ ◦ λ,

µ− : Mor(F ,H)→ Mor(F ,G) µ−(θ) := µ ◦ θ,

Y

Z X Z

Y ,

λ

φ

φ ◦ λ
µ ◦ θ

θ

µ

+ : Mor(G,H)→ Mor(H → F ,G → F) λ 7→ λ+,

− : Mor(H,G)→ Mor(F → H,F → G) µ 7→ µ−,

are in Mor
(
G → H, (H → F)→ (G → F)

)
and in

Mor
(
H → G, (F → H)→ (F → G)

)
, respectively.



Proposition

(A) Let S4 := (λ0, λ
4
1 ;φΛ4

0 , φΛ4

1 ) and F := (X ,F ).

(i) If S4 → F := (µ0, µ
<
1 ;φM

<

0 , φM
<

1 ), where M< := (µ0, µ
<
1 ) is a

contravariant direct family of sets over (I ,4) with
µ0(i) := Mor(Fi ,F) and

µ<1 (i , j) :=
(
Mor(Fj ,F),Mor(Fi ,F), (λ4ij )+

)
,

and φM
<

0 (i) := Fi → F , φM
<

1 (i , j) :=
(
Fi → F ,Fj → F , [(λ4ij )+]∗

)
,

then S4 → F is a contravariant (I ,4)-spectrum with Bishop spaces
(Mor(Fi ,F))i∈I and Bishop morphisms

(
(λ4ij )+

)
(i ,j)∈4(I )

.

(ii) If F → S4 := (ν0, ν
4
1 ;φN

4

0 , φN
4

1 ), where N4 := (ν0, ν
4
1 ) is a

direct family of sets over (I ,4) with ν0(i) := Mor(F ,Fi ) and

ν41 (i , j) :=
(
Mor(F ,Fi ),Mor(F ,Fj), (λ

4
ij )−

)
,

and if φN
4

0 (i) := F → Fi , φ
N4

1 (i , j) :=
(
F → Fj ,F → Fi , [(λ

4
ij )−]∗

)
,

then F → S4 is a covariant (I ,4)-spectrum with Bishop spaces
(Mor(F ,Fi ))i∈I and Bishop morphisms

(
(λ4ij )−

)
(i ,j)∈4(I )

.



Proposition

(B) Let S< := (λ0, λ
<
1 ;φΛ<

0 , φΛ<

1 ) and F := (X ,F ).

(i) If S< → F := (µ0, µ
4
1 ;φM

4

0 , φM
4

1 ), where M4 := (µ0, µ
4
1 ) is a

direct family of sets over (I ,4) with µ0(i) := Mor(Fi ,F) and

µ41 (i , j) :=
(
Mor(Fi ,F),Mor(Fj ,F), (λ<ji )+

)
,

and φM
4

0 (i) := Fi → F , φM
4

1 (i , j) :=
(
Fj → F ,Fi → F , [(λ<ji )+]∗

)
,

then S< → F is an (I ,4)-spectrum with Bishop spaces
(Mor(Fi ,F))i∈I and Bishop morphisms

(
(λ<ji )+

)
(i ,j)∈4(I )

.

(ii) If F → S< := (ν0, ν
<
1 ;φN

<

0 , φN
<

1 ), where N< := (ν0, ν
<
1 ) is a

contravariant direct family of sets over (I ,4) with
ν0(i) := Mor(F ,Fi ) and

ν<1 (i , j) :=
(
Mor(F ,Fj),Mor(F ,Fi ), (λ

<
ji )−

)
,

and φN
<

0 (i) := F → Fi , φ
N<

1 (i , j) :=
(
F → Fi ,F → Fj , [(λ

<
ji )−]∗

)
,

then F → S4 is a contravariant (I ,4)-spectrum with Bishop spaces
(Mor(F ,Fi )i∈I and Bishop morphisms

(
(λ4ij )−

)
(i ,j)∈4(I )

.



If S< := (λ0, λ
<
1 ;φΛ<

0 , φΛ<

1 ) a contravariant direct spectrum over
(I ,4) with Bishop spaces

(
Fi =

∨
F0i

)
i∈I , then

<∏
i∈I

Fi =

f ∈F0i∨
i∈I

(
f ◦ πΛ<

i

)
.

Theorem (Duality principle)

Let (I ,4) be a directed set, S4 := (λ0, λ
4
1 ;φΛ4

0 , φΛ4

1 ) an
(I ,4)-direct spectrum with Bishop spaces (Fi )i∈I and Bishop
morphisms (λ4ij )(i ,j)∈4(I ). If F := (X ,F ) is a Bishop space and

S4 → F := (µ0, µ
<
1 , φ

M<

0 , φM
<

1 ) is the previous A(i) contravariant
direct spectrum over (I ,4), then

Lim
←

(Fi → F) ' [(Lim
→
Fi )→ F ].



Theorem
Let (I ,4) be a directed set, S< := (λ0, λ

<
1 ;φΛ<

0 , φΛ<

1 ) a
contravariant direct spectrum over (I ,4) with Bishop spaces
(Fi )i∈I and Bishop morphisms (λ≺ji )(i ,j)∈4(I ). If F := (X ,F ) is a

Bishop space and F → S< := (ν0, ν
<
1 ;φ

<

0 , φ
N<

1 ) is the contravariant
direct spectrum over (I ,4), defined above in the previous
Proposition (B)(ii), then

Lim
←

(F → Fi ) ' [F → Lim
←
Fi ].



I We tried to show how some fundamental notions of Bishop’s
set theory, formulated in an explicit way within the
reconstruction BST of Bishop’s system, can be applied to the
constructive topology of Bishop spaces, and especially in the
theory of limits of Bishop spaces.

I The definition of e.g., the sum Bishop topology on the
corresponding direct sum shows a harmonious relation between
Bishop sets and Bishop spaces.

I We can define generalised I -families of sets, or generalised
families of sets over a directed set (I ,4), where more than one
transport maps from λ0(i) to λ0(j) are permitted.

I One can study the direct spectra of Bishop subspaces.



A family of subsets of X indexed by I is a triple ΛX := (λ0, E , λ1),
where λ0 : I  V0, and

E :
k

i∈I
F
(
λ0(i),X

)
, E(i) := Ei , i ∈ I ,

λ1 :
k

(i ,j)∈D(I )

F
(
λ0(i), λ0(j)

)
, λ1(i , j) := λij , (i , j) ∈ D(I )

I Ei : λ0(i)→ X is an embedding,
I λii := idλ0(i),
I Ei = Ej ◦ λij and Ej = Ei ◦ λji

λ0(i) λ0(j)

X

λij

λji
Ei Ej



I The internal equality (λij , λji ) : λ0(i) =P(X ) λ0(j) implies the
external equality (λij , λji ) : λ0(i) =V0 λ0(j).

Ek ◦(λjk ◦λij) = (Ek ◦λjk)◦λij = Ej ◦λij = Ei & Ek ◦λik = Ei

λ0(i) λ0(j) λ0(k)

X ,

λik

λij λjk

Ei EkEj

hence Ek ◦ (λjk ◦ λij) = Ek ◦ λik , and since Ek is an embedding,
we get λjk ◦ λij = λik .



If ΛX := (λ0, E , λ1) and MX := (µ0,E , µ1) are I -families of subsets
of X , a family of subsets-map from ΛX to MX is a dependent
assignment routine

Ψ :
k

i∈I
F
(
λ0(i), µ0(i)

)
, Ψ(i) := Ψi , i ∈ I ,

such that for every i ∈ I the following diagram commutes

X .

λ0(i) µ0(i)

Ei Ei

Ψi



I If Ψ : ΛX ⇒ MX , then Ψ : (λ0, λ1)⇒ (µ0, µ1).

If x ∈ λ0(i), then

Ej

(
Ψj(λij(x))

)
:= (Ej ◦Ψj)

(
λij(x)

)
= Ej

(
λij(x)

)
= Ei (x)

= (Ei ◦Ψi )(x) = Ej

(
µij(Ψi (x))

)
,

hence Ψj(λij(x) = µij(Ψi (x)).



Let ΛX := (λ0, E , λ1) be an I -family of subsets of X . The interior
union of ΛX is the totality

∑
i∈I λ0(i), which we denote in this case

by
⋃

i∈I λ0(i).

Let the assignment routine ε :
⋃

i∈I λ0(i) X

(i , x) 7→ Ei (x),

(i , x) =⋃
i∈I λ0(i) (j , y) :⇔ ε(i , x) =X ε(j , y) :⇔ Ei (x) =X Ej(y).(⋃

i∈I
λ0(i), ε

)
⊆ X .



Let ΛX := (λ0, E , λ1) be an I -family of subsets of X , where I is
inhabited by some element i0. The intersection

⋂
i∈I λ0(i) of ΛX is

the totality defined by

Φ ∈
⋂
i∈I
λ0(i) :⇔ Φ :

k

i∈I
λ0(i) & ∀i ,i ′∈I

(
Ei (Φi ) =X Ei ′(Φi ′)

)
.

Let the assignment routine e :
⋂

i∈I λ0(i) X

e(Φ) := Ei0
(
Φi0

)
.

Φ =⋂
i∈I λ0(i) Θ :⇔ e(Φ) =X e(Θ) :⇔ Ei0

(
Φi0

)
=X Ei0

(
Θi0

)
.(⋂

i∈I
λ0(i), e

)
⊆ X .



Let (I ,4) be a directed set, and X a set. A direct family of subsets
of X indexed by I is a triple Λ4X := (λ0, E , λ41 ), where λ0 : I  V0,

E :
k

i∈I
F
(
λ0(i),X

)
, E(i) := Ei , i ∈ I ,

λ41 :
k

(i ,j)∈4(I )

F
(
λ0(i), λ0(j)

)
, λ41 (i , j) := λ4ij , (i , j) ∈ 4 (I ),

such that the following conditions hold:

(a) For every i ∈ I , the function Ei : λ0(i)→ X is an embedding.

(b) For every i ∈ I , we have that λii := idλ0(i).

(c) For every (i , j) ∈4 (I ) we have that Ei = Ej ◦ λ4ij

λ0(i) λ0(j)

X .

λ4ij

Ei Ej



Let F := (X ,F ) be a Bishop space, (I ,4) a directed set, and let
Λ4X := (λ0, E , λ41 ) be an (I ,4)-family of subsets of X . For every
i ∈ I let the relative Bishop space Fi := F|λ0(i) := (λ0(i),Fi ) i.e.,

Fi := F|λ0(i) :=
∨
f ∈F

f ◦ Ei .

Let φΛX
0 (i) := Fi , and φΛX

1 :
c

(i ,j)∈4(I ) F(Fi ,Fj), where

φΛX
1 (i , j) := λ∗ji , for every (i , j) ∈4 (I ). We call the structure

S4X := (λ0, E , λ41 ;F ;φ
Λ4
X

0 , φ
Λ4
X

1 ),

direct spectrum over (I ,4) with Bishop subspaces (Fi )i∈I and
Bishop morphisms (Ei )i∈I .
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