“Neutral” Models of Constructive Mathematics

Thomas Streicher
TU Darmstadt

Stockholm, 20. August 2019
Often in semantics one builds a new model E over a *ground model* S as e.g. in topological semantics, realizability, topos theory... and there is a so-called *constant objects* (CO) functor

$$F : S \to E$$

describing how the ground model S sits within the new model E. Typically this F faithfully represents the construction of E from S.

Iteration of constructions as composition of CO functors.

Via “Artin Glueing” we obtain a new model $\text{Gl}(F) = E \downarrow F$ together with a logical functor

$$P_F = \partial_1 = \text{cod} : E \downarrow F \to S$$

which, therefore, is consistent with S which often is \textbf{Set}!
Let A be a complete Heyting (or boolean) algebra in a base topos S then the topos $Sh_S(A)$ of sheaves over A contains the base S via $F : S \to \mathcal{E}$ sending I to the “constant sheaf” with value I. Thinking of \mathcal{E} as A-valued sets” we have $F(I) = (I, eq_I)$ where $eq_I(i, j) = \bigvee \{1_A \mid i = j\}$.

The CO functor F preserves finite limits, has a right adjoint U and every $X \in \mathcal{E}$ appears as subquotient of some FI.

Such adjunctions $F \dashv U : \mathcal{E} \to \textbf{Set}$ are called ”localic geometric morphisms” since the latter condition says that subobjects of $1_\mathcal{E}$ generate. Under these assumptions \mathcal{E} is equivalent to $Sh_S(U\Omega_\mathcal{E})$

Since maps $I \to U\Omega_\mathcal{E}$ correspond to maps $FI \to \Omega_\mathcal{E}$, i.e. subobjects of FI, the externalization of $U\Omega_\mathcal{E}$ is given by $F^*\text{Sub}_\mathcal{E}$ (where Sub$_\mathcal{E}$ is the subobject fibration of \mathcal{E}).
If $F : S \to \mathcal{E}$ is a finite limit preserving functor between toposes we may consider the (Grothendieck) fibration P_F as in

\[
\begin{array}{ccc}
\mathcal{E}_{\downarrow F} & \to & \mathcal{E}_{\downarrow \mathcal{E}} \\
\downarrow P_F & & \downarrow P_{\mathcal{E}} \\
S & \to & \mathcal{E}
\end{array}
\]

where $P_{\mathcal{E}}$ (and thus also P_F) is the codomain functor. All fibers of P_F are toposes and all reindexing functors are logical (i.e. preserve finite limits, exponentials and subobject classifiers) and P_F has internal sums (i.e. P_F is a cofibration where cocartesian arrows are stable under pullbacks along cartesian arrows in \mathcal{E}).
Such fibrations $P : \mathcal{X} \to S$ are called *fibered toposes with internal sums*. M. Jibladze has shown that internal sums are necessarily *stable and disjoint* from which it follows by Moens’s Theorem that $P : \mathcal{X} \to S$ is equivalent to P_F where $F : S \to \mathcal{E} = P(1)$ sends $u : J \to I$ to the unique vertical arrow Fu rendering the diagram

\[
\begin{array}{ccc}
1_J & \xrightarrow{\varphi_J} & FJ \\
\downarrow{\text{cocart.}} & & \downarrow{\text{cocart.}} \\
1_U & \xrightarrow{\varphi_I} & FI \\
\end{array}
\]

commutative. Up to equivalence this F is determined by P, informally speaking it sends $I \in S$ to $\bigsqcup_I 1_I$.

The Moens-Jibladze Correspondence (2)

Streicher

“Neutral” Models of Constructive Mathematics
Further fibrational properties of P_F can be reformulated as elementary properties of F as follows:

1. P_F is locally small iff F has a right adjoint U.
2. P_F has a small generating family iff there is a bound $B \in \mathcal{E}$ such that every $X \in \mathcal{E}$ appears as subquotient of some $B \times F I$.

In particular, P_F is a localic topos fibered over S iff P_F is locally small and $F \downarrow U$ is bounded by $1_\mathcal{E}$.

Streicher, "Neutral" Models of Constructive Mathematics
A **tripos** over a base topos S is a functor F from S to a topos E such that

1. F preserves finite limits and
2. every $A \in E$ appears as subquotient of FI for some $I \in S$.

A tripos $F : S \to E$ is **strong** iff F preserves also epis (which trivially holds if S is **Set** since there all epis are split!).

A tripos $F : S \to E$ is **traditional** iff there is a subobject $\tau : T \rightarrowtail \Sigma$ such that every mono $m : P \rightarrowtail FI$ fits into a pullback

$$
\begin{array}{ccc}
P & \rightarrow & T \\
m \downarrow & & \downarrow \tau \\
FI & \rightarrow & F\Sigma \\
\end{array}
$$

for some (typically not unique) $p : I \to \Sigma$.

Ref: Streicher "Neutral" Models of Constructive Mathematics
With every traditional tripos $F : S \to \mathcal{E}$ one can associate the fibered poset $\mathcal{P}_F = F^* \text{Sub}_\mathcal{E}$ validating the conditions

1. \mathcal{P}_F is a fibration of pre-Heyting-algebras

2. for every u in the base the reindexing map $u^* = \mathcal{P}_F(u)$ has both adjoints $\exists_u \vdash u^* \dashv \forall_u$ (as a map of preorders) validating the (Beck-)Chevalley condition\(^1\)

3. there is a generic $\tau \in \mathcal{P}_F(\Sigma)$ such that every $\phi \in \mathcal{P}_F(I)$ is isomorphic to $p^* \tau$ for some $p : I \to \Sigma$.

\(^1\)i.e. we have $v^* \exists_u \vdash \exists_p q^*$ and $v^* \forall_u \vdash \forall_p q^*$ for all pullbacks

\[\begin{array}{ccc}
L & \xrightarrow{q} & J \\
\downarrow p & & \downarrow u \\
K & \xrightarrow[v]{} & I
\end{array}\]
If F is just a tripos then the third condition has to be weakened as follows:

for very $I \in S$ there is a $P(I)$ in S and ε_I in $\mathcal{P}_F(I \times P(I))$ such that for every ρ in $\mathcal{P}_F(I \times J)$

$$(\text{Comp}) \quad \forall j \in J. \exists p \in P(I). \forall i \in I. \rho(i, j) \leftrightarrow i \varepsilon_I p$$

holds in the logic of \mathcal{P}_F.

This is the usual *comprehension principle* for HOL. Its Skolemized (and thus stronger) version is equivalent to the existence of a generic subterminal $\tau : T \rightarrow F\Sigma$ (where Σ is $P(1)$).

But the logic of the tripos does not validate extensionality for predicates, i.e. p is not uniquely determined by j.

Streicher

“Neutral” Models of Constructive Mathematics
For triposes $F : S \to \mathcal{E}$ the CO functor $S \to S[\mathcal{P}_F]$ is equivalent to F and a tripos \mathcal{P} is equivalent to \mathcal{P}_F where F is the CO functor $S \to S[\mathcal{P}]$ as shown in Pitts’s Thesis.

Here $S[\mathcal{P}]$ is obtained from \mathcal{P} by “adding quotients” defining morphisms as functional relations. The CO functor $S \to S[\mathcal{P}]$ sends I to (I, eq_I) where $eq_I = \exists \delta_I \top_I$.
Are triposes $F_1, F_2 : S \to \mathcal{E}$ necessarily equivalent?

The answer is in general NO if S is not equal to \textbf{Set} since for sober (e.g. Hausdorff spaces) X and Y there are as many localic geometric morphism $\text{Sh}(Y) \to \text{Sh}(X)$ as there are continuous maps from Y to X.

For all natural numbers $n > 0$ the functor

$$F_n : \textbf{Set} \to \textbf{Set} : l \mapsto l^n$$

is a tripos. But F_n and F_m are equivalent iff $n = m$.

Alas, the question is open for traditional triposes over \textbf{Set} since in the above counterexample only F_1 is a traditional tripos.
Already in [HJP80] where triposes were introduced it was asked whether localic toposes $\text{Sh}(A)$ over \textbf{Set} may be induced by traditional triposes whose constant objects functor is not equivalent to $\Delta : \textbf{Set} \to \text{Sh}(A)$.

Maybe we get such examples via classical realizability? Krivine’s criterion (absence of “parallel or”) for a realizability algebra only guarantees that the associated tripos is not localic but not that the induced topos is not localic...e.g. possibly \textbf{Set}.

Also realizability toposes $\text{RT}(A)$ over \textbf{Set} could be induced by triposes whose constant objects functor is not equivalent to $\nabla : \textbf{Set} \to \text{RT}(A)$.
If \mathcal{E} is the topos of reflexive graphs $\text{Set}^{\Delta_1^{\text{op}}}$ or the topos $\text{Set}^{\Delta^{\text{op}}}$ of simplicial sets then $\nabla : \text{Set} \to \mathcal{E}$ (right adjoint to $\Gamma = \mathcal{E}(1, -)$) is a (strong) tripos which, however, is not traditional.

Every reflexive graph may be covered by a subobject of some $\nabla(S)$!

Possibly, this also holds for the topos of cubical sets $\text{Set}^{\Box^{\text{op}}}$ (where \Box is the full subcat of Poset on finite powers of the ordinal 2)?
Together with P. Lietz I showed that the extensional realizability topos Ext doesn’t validated Ishihara’s $\text{BD}_\mathbb{N}$.

But Ext validates a negative form of Church’s Thesis, namely

$$\forall f : \mathbb{N} \to \mathbb{N}. \neg \neg \exists e : \mathbb{N}. f = \{e\}$$

and thus is not conservative over Set.

But for every finite limit preserving functor $F : S \to \mathcal{E}$ between toposes the comma category $\mathcal{E} \downarrow F$ is a topos and the functor $P_F = \partial_1 = \text{cod} : \mathcal{E} \downarrow F \to S$ is logical and has full and faithful left and right adjoints sending $I \in S$ to $0 \to FI$ and id_{FI}, respectively.

For triposes $F : \text{Set} \to \mathcal{E}$ the comma category $\mathcal{E} \downarrow F$ is a topos and $P_F = \text{cod} : \mathcal{E} \downarrow F \to \text{Set}$ is logical.

Thus $\mathcal{E} \downarrow F$ only validates sentences which hold in Set and thus is a neutral model of constructive mathematics.
Summary

- Ground models are typically not unique! (Since \mathbf{Set} is induced by infinitely many non-equivalent triposes over \mathbf{Set}).
- Question open for traditional triposes over \mathbf{Set} even for localic and realizability toposes though there are canonical candidates Δ and ∇, respectively. But are these the only possibilities?
- Triposes F over \mathbf{Set} via “Artin Glueing” give rise to neutral models $\mathcal{E} \uparrow F$ since $P_F = \text{cod} : \mathcal{E} \uparrow F \to \mathbf{Set}$ is logical.
- With a bit of luck $\mathcal{E} \uparrow F$ preserves some of the weaknesses of \mathcal{E}, e.g. doesn’t validate FAN, $\text{BD}_\mathbb{N}$, etc.
A. Miquel has introduced a notion of *implicative algebra* and shown that every such i.a. A gives rise to a tripos \mathcal{P}^A over \textbf{Set} and every traditional tripos over \textbf{Set} arises this way as $\Delta_A : \textbf{Set} \to \textbf{Set}[\mathcal{P}^A]$.

This generalizes to base toposes S with nno: every traditional strong tripos $F : S \to \mathcal{E}$ is equivalent to $\Delta_A : S \to S[\mathcal{P}^A]$ for some i.a. A in S where $\Delta_A(I) = (I, eq_I)$.

"Neutral" Models of Constructive Mathematics
An implicative structure is a complete lattice $\mathcal{A} = (A, \leq)$ together with an implication operation $\rightarrow: \mathcal{A}^{\text{op}} \times \mathcal{A} \rightarrow \mathcal{A}$ such that $y \rightarrow \bigwedge X = \bigwedge \{y \rightarrow x\}$ for all $y \in \mathcal{A}$ and $X \subseteq \mathcal{A}$.

Thus $y \rightarrow (-)$ has a left adjoint $(-)y$ given by

$$xy = \bigwedge\{z \mid x \leq y \rightarrow z\}$$

Then $K_A = \bigwedge_{x, y \in \mathcal{A}} x \rightarrow y \rightarrow x$ and $S_A = \bigwedge_{x, y, z \in \mathcal{A}} (x \rightarrow y \rightarrow z) \rightarrow (x \rightarrow y) \rightarrow x \rightarrow z$ are elements of \mathcal{A} for which we have

$$K_A xy \leq x \quad \text{and} \quad S_A xyz = xz(yz)$$
A separator in an implicative structure \((\mathcal{A}, \rightarrow)\) is an upward closed subset \(S\) of \(\mathcal{A}\) such that \(K_\mathcal{A}, S_\mathcal{A} \in S\) and \(S\) is closed under *modus ponens*, i.e. \(b \in S\) whenever \(a \in S\) and \(a \rightarrow b \in S\).

An implicative algebra is a triple \((\mathcal{A}, \rightarrow, S)\) such that \((\mathcal{A}, \rightarrow)\) is an implicative structure and \(S\) is a separator in \((\mathcal{A}, \rightarrow)\).

With every implicative algebra \(\mathcal{A}\) one associates a *Set*-based tripos \(\mathcal{P}^\mathcal{A}\) where \(\mathcal{P}^\mathcal{A}(I)\) is the preorder \(\vdash_I\) on \(\mathcal{A}^I\) defined as

\[
\varphi \vdash_I \psi \quad \text{iff} \quad \bigwedge_{i \in I} (\varphi_i \rightarrow \psi_i) \in S
\]

and reindexing is given by precomposition.