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Definition
Brouwer’s principle states that all functions NN → N are
continuous.

Theorem (S.)

Working in a metatheory where Brouwer’s principle holds, weak
forms of countable choice and collection are false in cubical sets.



We work over intensional type theory.

Definition
A type X is an hproposition if the type

∏
x ,y :X x = y is inhabited.

A type X is an hset if for all x , y : X , the type x = y is an
hproposition.

Definition
Given a type X , we define the propositional truncation of X , ‖X‖
to be the higher inductive type defined as follows.

1. For any element x of X there is an element |x | of ‖X‖.
2. For any two elements x , y of ‖X‖ there is an equality x = y .



Definition
The axiom of choice states that for every hset X and every
Y : X → hSet, we have the following

∏
x :X

‖Y (x)‖ −→

∥∥∥∥∥∏
x :X

Y (x)

∥∥∥∥∥

We usually work with restricted versions of the full axiom, e.g.

Definition
Write ACN,2 for the following choice axiom. Suppose we are given
P,Q : N→ hProp. Then,

∏
n:N
‖P(n) + Q(n)‖ −→

∥∥∥∥∥∏
n:N

P(n) + Q(n)

∥∥∥∥∥
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Definition (Bridges, Richman, Schuster)

We refer to the following choice axiom as weak countable choice.
For all X : N→ hSet such that∏

m 6=n

‖isContr(X (m)) + isContr(X (n))‖

we have ∏
n:N
‖X (n)‖ −→

∥∥∥∥∥∏
n:N

X (n)

∥∥∥∥∥
Note that ACN,2 and weak countable choice follow from the law of
excluded middle.



Definition
Given α : N→ 2, write 〈α〉 for the type∑

n:N α(n) = 1×
∏

m<n α(m) = 0. “There is a (necessarily
unique) least n such that α(n) = 1.”

Definition (Escardó-Knapp)

We call the following axiom Escardó-Knapp choice, EKC. For
every hset X , and every binary sequence α : N→ 2,

(〈α〉 → ‖X‖) −→ ‖〈α〉 → X‖

I also consider the “intersection” of EKC and ACN,2.

Definition
We refer to EKC2 as the axiom that for any P,Q : hProp, we have

(〈α〉 → ‖P + Q‖) −→ ‖〈α〉 → P + Q‖
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We call the following axiom Escardó-Knapp choice, EKC. For
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Definition (Cohen, Coquand, Huber, Mörtberg)

The cube category is the category where N is the set of objects
and a morphism from m to n is a homomorphism from the free De
Morgan algebra on m elements to the free De Morgan algebra on n
elements. A cubical set is a functor from the cube category to sets.

Theorem (Cohen, Coquand, Huber, Mörtberg)

Cubical sets form a constructive model of homotopy type theory.



Definition (Cohen, Coquand, Huber, Mörtberg)
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We think of a cubical set X as a topological space. We think of
elements of X (0) as “points”, elements of X (1) as “paths” and
elements of X (2) as “homotopies between paths.”

We have a diagram

X (1) X (0)

δ0

δ1

i

We refer to paths in the image of i as constant or degenerate.

Note that even for hsets elements of X (2) play a non trivial role:
Any two paths with the same endpoints are homotopic, but
sometimes we can also show strict equality (equal as elements of
the set X (1)).
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Propositional truncation exists in cubical sets. It has rich structure,
in contrast to propositional truncation in models of extensional
type theory.

‖X‖ contains a subobject LFR(X ) (local fibrant replacement) such
that

1. LFR(X ) is a locally decidable i.e. every element of ‖X‖ either
belongs to LFR(X ) or does not. In particular every path in
‖X‖ belongs to LFR or does not.

2. Every point of ‖X‖ (and hence every constant path) belongs
to LFR(X ).

3. LFR(X ) is equivalent to X .

We will refer to the elements of ‖X‖ belonging to LFR(X ) as
squash free.
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Theorem
The following are false in cubical sets, assuming Brouwer’s
principle.

1.
∏

N S1 is covered by an hset 0-Cov(
∏

N S1).

2. An Escardó-Knapp variant of fullness, Full(N, 2)EK

3. An Escardó-Knapp variant of collection, CollEK

Main idea of proof: Let p be a path in ‖X‖, say that p is non
degenerate. Write pα for the path in 〈α〉 → ‖X‖ constantly equal
to p. Note that pα is degenerate if and only if α = 0ω.
Any natural transformation f : 〈α〉 → ‖X‖ −→ ‖〈α〉 → X‖
restricts to a function f1 from paths in 〈α〉 → ‖X‖ to paths in
‖〈α〉 → X‖ that preserves degenerate maps.
Since p0ω is degenerate, f1(p0ω) is squash free.
Hence by continuity there is a natural number n such that f1(pn) is
squash free. We thus obtain a path in X .
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Corollary

The following are false in cubical sets, assuming Brouwer’s
principle. They are independent of homotopy type theory.

1. PAx

2. Dependent choice, DC

3. WISC

4. Fullness, Full

5. Collection, Coll

6.
∏

N S1 is connected,
∏

N S1-Conn

7. (Bridges-Richman-Schuster) Weak countable choice, WCC

8. ACN,2

9. Escardó-Knapp choice, EKC

Proof.
See next slide.
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∏
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Coll Full
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Corollary

Work over CZFExp,Rep, the theory obtained by replacing subset
collection with exponentiation and strong collection with
replacement in CZF. The following are not provable.

1. PAx

2. Dependent choice, DC

3. WISC

4. Fullness, Full

5. Collection, Coll

6. (Bridges-Richman-Schuster) Weak countable choice, WCC

7. ACN,2

8. Escardó-Knapp choice, EKC

Proof.
The HIT cumulative hierarchy models CZFExp,Rep and the
principles CollEK and Full(N, 2)EK are both “absolute” for the HIT
cumulative hierarchy.



Further questions:

1. Is there a constructive model of homotopy type theory with
countable choice?

2. What is the consistency strength of homotopy type theory
with countable choice?

3. More applications of homotopy type theory to independence
results in set theory?

4. Is countable choice a reasonable constructive axiom?

Thank you for your attention!
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