Various structures of T-definable functionals via a Gentzen-style translation

Chuangjie Xu
(j.w.w. Nils Köpp)
Ludwig-Maximilians-Universität München
Mathematical Logic and Constructivity
20,21-23 August 2019, Stockholm

Introduction and motivations

This talk is to

1. to present a monadic translation of Gödel's System T into itself which is in the spirit of the Gentzen's negative translation of logic, and
2. to demonstrate how various structures of T-definable functions can be directly revealed via its instantiations.

Motivations:

- [Oliva \& Steila 2018]: bar recursion closure theorem
- [Escardó 2013]: dialogue trees
- [van den Berg 2019]: generalization of Kuroda's negative translation

Gödel's system T

We work with (the term language of) Gödel's System T in its λ-calculus form

$$
\mathrm{T} \equiv \text { simply typed } \lambda \text {-calculus }+\mathbb{N}+\text { primitive recursor. }
$$

We extend T with products and sums. Hence, T can be given by

$$
\begin{aligned}
\text { Type } & \sigma, \tau: \equiv \mathbb{N}|\sigma \rightarrow \tau| \sigma \times \tau \mid \sigma+\tau \\
\text { Term } & t, u: \equiv x|\lambda x . t| t u \mid \mathrm{c}
\end{aligned}
$$

where constants cinclude those for

- natural numbers:

$$
0: \mathbb{N} \quad \text { suc }: \mathbb{N} \rightarrow \mathbb{N} \quad \text { rec }: \sigma \rightarrow(\mathbb{N} \rightarrow \sigma \rightarrow \sigma) \rightarrow \mathbb{N} \rightarrow \sigma
$$

- products:

$$
\text { pair : } \sigma_{1} \rightarrow \sigma_{2} \rightarrow \sigma_{1} \times \sigma_{2} \quad \operatorname{pr}_{i}: \sigma_{1} \times \sigma_{2} \rightarrow \sigma_{i}
$$

- sums:

$$
\operatorname{inj}_{i}: \sigma_{i} \rightarrow \sigma_{1}+\sigma_{2} \quad \text { case }:\left(\sigma_{1} \rightarrow \tau\right) \rightarrow\left(\sigma_{2} \rightarrow \tau\right) \rightarrow \sigma_{1}+\sigma_{2} \rightarrow \tau
$$

Gödel's system T: some conventions

A function is called T -definable if we can find a term in T denoting it. But in this talk, we do not distinguish T-definable functions and their corresponding terms in T .

Moreover, we (may) write

- $\lambda x_{1} x_{2} \cdots x_{n} . t$ instead of $\lambda x_{1} \cdot \lambda x_{2} \cdots \lambda x_{n} . t$;
- $f\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ instead of $\left(\left(\left(f a_{1}\right) a_{2}\right) \cdots\right) a_{n}$;
- $\langle a, b\rangle$ instead of pair (a, b);
- w_{i} instead of $\operatorname{pr}_{i} w$ for $i \in\{1,2\}$;
- $n+1$ instead of $\operatorname{suc}(n)$;
- $\mathbb{N}^{\mathbb{N}}$ instead of $\mathbb{N} \rightarrow \mathbb{N}$;
- α_{i} instead of $\alpha(i)$ for $\alpha: \mathbb{N}^{\mathbb{N}}$ and $i: \mathbb{N}$.

Gentzen's negative translation and its generalization

Translating formulas in predicate logic as follows

$$
\begin{aligned}
(A \rightarrow B)^{\mathrm{G}} & : \equiv A^{\mathrm{G}} \rightarrow B^{\mathrm{G}} & P^{\mathrm{G}} & : \equiv \neg \neg P \quad \text { for primitive } P \\
(A \wedge B)^{\mathrm{G}} & : \equiv A^{\mathrm{G}} \wedge B^{\mathrm{G}} & (A \vee B)^{\mathrm{G}} & : \equiv \neg \neg\left(A^{\mathrm{G}} \vee B^{\mathrm{G}}\right) \\
(\forall x A)^{\mathrm{G}} & : \equiv \forall x A^{\mathrm{G}} & (\exists x A)^{\mathrm{G}} & : \equiv \neg \neg \exists x A^{\mathrm{G}}
\end{aligned}
$$

one can prove $\mathrm{CL} \vdash A \Longleftrightarrow \mathrm{ML} \vdash A^{\mathrm{G}}$.
This translation can be generalized by replacing $\neg\urcorner$ by arbitrary nuclei ${ }^{1}$, that is, a mapping j on formulas satisfying certain conditions.

- For any j, we have $\mathrm{IL} \vdash A \Longrightarrow \mathrm{IL} \vdash A_{j}^{\mathrm{G}}$.
- If $j A=(A \rightarrow R) \rightarrow R$, then $\mathrm{CL} \vdash A \Longrightarrow \mathrm{IL} \vdash A_{j}^{\mathrm{G}}$.
- If $j A=A \vee \perp$, then $\mathrm{IL} \vdash A \Longrightarrow \mathrm{ML} \vdash A_{j}^{\mathrm{G}}$.

[^0]
Nuclei (relative to T)

A nucleus (relative to T) is an endofunction J on types of T equipped with T-terms

$$
\eta: \rho \rightarrow \mathrm{J} \rho \quad \kappa:(\sigma \rightarrow \mathrm{J} \rho) \rightarrow \mathrm{J} \sigma \rightarrow \mathrm{~J} \rho
$$

for any types σ, ρ such that

$$
\eta^{\kappa}=\mathrm{id} \quad f^{\kappa} \circ \eta=f \quad\left(g^{\kappa} \circ f\right)^{\kappa}=g^{\kappa} \circ f^{\kappa}
$$

hold up to pointwise equality, where we write f^{κ} to denote κf.

For any nucleus J, we can define the following terms in T :

- $\mu: \equiv\left(\lambda x^{\mathrm{J} \rho} \cdot x\right)^{\kappa}: \mathrm{JJ} \rho \rightarrow \mathrm{J} \rho$
- $J: \equiv \lambda f^{\sigma \rightarrow \rho} .(\eta \circ f)^{\kappa}:(\sigma \rightarrow \rho) \rightarrow \mathrm{J} \sigma \rightarrow \mathrm{J} \rho$

Hence (J, μ, η) forms a monad on the term model of T .

A Gentzen-style translation of T

We translate types of T in the style of Gentzen

$$
\begin{aligned}
(\sigma \rightarrow \tau)^{\mathrm{J}} & : \equiv \sigma^{\mathrm{J}} \rightarrow \tau^{\mathrm{J}} & \mathbb{N}^{\mathrm{J}} & : \equiv \mathrm{J} \mathbb{} \\
(\sigma \times \tau)^{\mathrm{J}} & : \equiv \sigma^{\mathrm{J}} \times \tau^{\mathrm{J}} & (\sigma+\tau)^{\mathrm{J}} & : \equiv \mathrm{J}\left(\sigma^{\mathrm{J}}+\tau^{\mathrm{J}}\right)
\end{aligned}
$$

Assume a mapping of variables $x: \sigma$ to $x^{\mathrm{J}}: \sigma^{\mathrm{J}}$. For each term $t: \rho$ of T , we assign a term $t^{\mathrm{J}}: \rho^{\mathrm{J}}$ by

$$
\begin{aligned}
(x)^{\mathrm{J}} & : \equiv x^{\mathrm{J}} & 0^{\mathrm{J}} & : \equiv \eta(0) \\
(\lambda x . t)^{\mathrm{J}} & : \equiv \lambda x^{\mathrm{J}} \cdot t^{\mathrm{J}} & \operatorname{suc}^{\mathrm{J}} & : \equiv J(\mathrm{suc}) \\
(t u)^{\mathrm{J}} & : \equiv t^{\mathrm{J}} u^{\mathrm{J}} & \operatorname{rec}^{\mathrm{J}} & : \equiv \lambda a f \cdot \operatorname{ke}(\operatorname{rec}(a, f \circ \eta)) \\
\text { pair }^{\mathrm{J}} & : \equiv \operatorname{pair} & \operatorname{inj}_{i}{ }^{\mathrm{J}} & : \equiv \eta \circ \operatorname{inj}_{i} \\
\operatorname{pr}_{i}{ }^{\mathrm{J}} & : \equiv \operatorname{pr}_{i} & \operatorname{case}^{\mathrm{J}} & : \equiv \lambda f g \cdot \operatorname{ke}(\operatorname{case}(f, g))
\end{aligned}
$$

corresponding to the soundness proof of Gentzen's negative translation.

Kleisli extension

Given $a: \rho^{\mathrm{J}}$ and $f: \mathrm{J} \mathbb{N} \rightarrow \rho^{J} \rightarrow \rho^{\mathrm{J}}$, we want to define $\operatorname{rec}^{\mathrm{J}}(a, f): \mathrm{JN} \rightarrow \rho^{\mathrm{J}}$.
A promissing candidate is $\operatorname{rec}(a, f \circ \eta): \mathbb{N} \rightarrow \rho^{\mathrm{J}}$.
But we cannot directly use $\kappa:(\sigma \rightarrow \mathrm{J} \rho) \rightarrow \mathrm{J} \sigma \rightarrow \mathrm{J} \rho$.
We define $\mathrm{ke}_{\rho}^{\sigma}:\left(\sigma \rightarrow \rho^{\mathrm{J}}\right) \rightarrow \mathrm{J} \sigma \rightarrow \rho^{\mathrm{J}}$ by induction on ρ as follows

$$
\begin{aligned}
\operatorname{ke}_{\mathbb{N}}^{\sigma}(f, a) & : \equiv f^{\kappa} a \\
\operatorname{ke}_{\tau+\rho}^{\sigma}(f, a) & : \equiv f^{\kappa} a \\
\operatorname{ke}_{\tau \rightarrow \rho}^{\sigma}(f, a) & : \equiv \lambda x^{\tau^{\top}} \cdot \operatorname{ke}_{\rho}^{\sigma}\left(\lambda y^{\sigma} \cdot f(y, x), a\right) \\
\operatorname{ke}_{\tau \times \rho}^{\sigma}(f, a) & : \equiv\left\langle\operatorname{ke}_{\tau}^{\sigma}\left(\operatorname{pr}_{1} \circ f, a\right), \operatorname{ke}_{\rho}^{\sigma}\left(\operatorname{pr}_{2} \circ f, a\right)\right\rangle .
\end{aligned}
$$

and then use it to define rec ${ }^{\mathrm{J}}$ and case ${ }^{\mathrm{J}}$.
Lemma (Kleisli extension). For any $f: \sigma \rightarrow \rho^{\mathrm{J}}$ and $x: \sigma$, we have

$$
\operatorname{ke}_{\rho}^{\sigma}(f, \eta x)=f x
$$

Correctness

Lemma. The J-translation preserves substitutions, i.e.

$$
(t[u / x])^{\mathrm{J}}=t^{\mathrm{J}}\left[u^{\mathrm{J}} / x^{\mathrm{J}}\right] .
$$

Theorem (Correctness).

- If $\Gamma \vdash t: \rho$, then $\Gamma^{\mathrm{J}} \vdash t^{\mathrm{J}}: \rho^{\mathrm{J}}$.
- If $t={ }_{\beta \eta} u$, then $t^{J}={ }_{\beta \eta} u^{\mathrm{J}}$.

The examples in this talk use only the Kleisli-extension lemma.
For simplicity, we consider T without sums in the examples.
Any nucleus on natural numbers (i.e. a type JN with terms $\eta: \mathbb{N} \rightarrow \mathrm{JN}$ and $\kappa:(\mathbb{N} \rightarrow \mathrm{JN}) \rightarrow \mathrm{JN} \rightarrow \mathrm{JN})$ suffices to translate T without sums.

Example I: lifting to functions of higher type levels ${ }^{2}$

If one wants to prove a property P of functions $f: X \rightarrow \mathbb{N}$ (such as continuity of functions $\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$), the usual syntactic method using an inductively defined logical relation may not work directly.

We "precook" T by applying the J-translation with the following nucleus

$$
\mathrm{J} \mathbb{N}: \equiv X \rightarrow \mathbb{N} \quad \eta(n): \equiv \lambda x \cdot n \quad f^{\kappa}(g): \equiv \lambda x \cdot f(g x, x)
$$

For any concrete type X, we can construct a term $\Omega: X^{\mathrm{J}}$ such that

$$
f^{J}(\Omega)=f
$$

up to pointwise equality, for any $f: X \rightarrow \mathbb{N}$ of T .

[^1]
Example I: lifting to functions of higher type levels (cont.)

Define a predicate $Q_{\rho} \subseteq \rho^{\mathrm{J}}$ inductively on ρ

$$
\begin{aligned}
Q_{\mathbb{N}}(f) & : \equiv P(f) \quad \text { the desired property } \\
Q_{\sigma \rightarrow \tau}(h) & : \equiv \forall x^{\sigma^{\mathrm{J}}}\left(Q_{\sigma}(x) \rightarrow Q_{\tau}(h x)\right)
\end{aligned}
$$

Once we prove (1) $Q_{\rho}\left(t^{\mathrm{J}}\right)$ for all $t: \rho$ of T and (2) $Q_{X}(\Omega)$, we can conclude

$$
P(f) \text { for all } f: X \rightarrow \mathbb{N} \text { in } \mathrm{T}
$$

because we have $Q_{\mathbb{N}}\left(f^{\mathrm{J}} \Omega\right)=P\left(f^{\mathrm{J}} \Omega\right)$ and $f=f^{\mathrm{J}} \Omega$.

All the examples presented later can be proved using this method.
But we can instead work with a nucleus J which reflects the computational information of the property P, so that witnesses of P can be obtained as terms of T directly via the J-translation.

Example II: majorizability ${ }^{3}$

Recall that the relation maj${ }_{\rho} \subseteq \rho \times \rho$ is defined by

$$
\begin{aligned}
n \operatorname{maj}_{\mathbb{N}} m & : \equiv n \geq m \\
f \operatorname{maj}_{\sigma \rightarrow \tau} g & : \equiv \forall x^{\sigma} y^{\sigma}\left(x \operatorname{maj}_{\sigma} y \rightarrow f x \operatorname{maj}_{\tau} g y\right)
\end{aligned}
$$

Consider the nucleus

$$
\mathrm{J} \mathbb{N}: \equiv \mathbb{N} \quad \eta(n): \equiv n \quad\left\{\begin{array}{l}
g^{\kappa}(0): \equiv g(0) \\
g^{\kappa}(n+1): \equiv \max \left(g^{\kappa}(n), g(n+1)\right)
\end{array}\right.
$$

Theorem. For any $t: \rho$ of T , we have

$$
t^{\mathrm{J}} \operatorname{maj}_{\rho} t
$$

[^2]
Example III: continuity ${ }^{4}$

Recall that $M: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ is called a modulus of continuity of $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ if

$$
\forall \alpha \beta\left(\alpha={ }_{M \alpha} \beta \rightarrow f \alpha=f \beta\right) .
$$

Consider the nucleus

$$
\mathcal{J}: \equiv \mathbb{N} \times \mathbb{N} \quad \eta(n): \equiv\langle n, 0\rangle \quad g^{\kappa}(x): \equiv\left\langle\left(g x_{1}\right)_{1}, \max \left(x_{2},\left(g x_{1}\right)_{2}\right)\right\rangle
$$

Given $\alpha: \mathbb{N}^{\mathbb{N}}$, we construct a term $\tilde{\alpha}: J \mathbb{N} \rightarrow \mathrm{JN}$ by

$$
\tilde{\alpha}: \equiv\left(\lambda n \cdot\left\langle\alpha_{n}, n+1\right\rangle\right)^{\kappa} .
$$

Theorem. For any $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ of T , the term $M: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ defined by

$$
M: \equiv \lambda \alpha \cdot\left(f^{J} \tilde{\alpha}\right)_{2}
$$

is a modulus of continuity of f.

[^3]
Example III: continuity - intuition

- An element of $\mathrm{JN}(: \equiv \mathbb{N} \times \mathbb{N})$ is a pair $\langle v, m\rangle$ where
- v is the value of some function $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ at some point $\alpha: \mathbb{N}^{\mathbb{N}}$ and
- m is a modulus of continuity of f at α.
- $\eta(n): \equiv\langle n, 0\rangle$ represents the constant function with value n.
- $g^{\kappa}: \equiv \lambda x \cdot\left\langle\left(g x_{1}\right)_{1}, \max \left(x_{2},\left(g x_{1}\right)_{2}\right)\right\rangle$ is the extension of $g: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ with the modulus updated in a reasonable way.

Now assume that we have a function $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ and an input $\alpha: \mathbb{N}^{\mathbb{N}}$.

- $f^{J}:(\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}) \rightarrow \mathbb{N} \times \mathbb{N}$ computes also a modulus.
- The generic element $\tilde{\alpha}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$

$$
\tilde{\alpha}: \equiv\left(\lambda n \cdot\left\langle\alpha_{n}, n+1\right\rangle\right)^{\kappa}=\lambda x \cdot\left\langle\alpha_{x_{1}}, \max \left(x_{2}, x_{1}+1\right)\right\rangle
$$

updates the modulus if a larger index of α is used.

- Applying f^{J} to $\tilde{\alpha}$, we get both the value $\left(f^{J} \tilde{\alpha}\right)_{1}$ and modulus $\left(f^{J} \tilde{\alpha}\right)_{2}$.

Example III: continuity - proof

Proof. We use also the lifting nucleus $\mathrm{b} \mathbb{N}: \equiv \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ introduced in Example I and write $t^{\mathrm{b}}: \rho^{\mathrm{b}}$ to denote the translation with the nucleus b .
Given $\alpha: \mathbb{N}^{\mathbb{N}}$, define a logical relation $\mathbf{R}_{\rho}^{\alpha} \subseteq \rho^{\mathrm{J}} \times \rho^{\mathrm{b}}$ by

$$
\begin{aligned}
w \mathbf{R}_{\mathbb{N}}^{\alpha} f & : \equiv w_{1}=f \alpha \wedge \forall \beta\left(\alpha={ }_{w_{2}} \beta \rightarrow f \alpha=f \beta\right) \\
g \mathbf{R}_{\sigma \rightarrow \tau}^{\alpha} h & : \equiv \forall x y\left(x \mathbf{R}_{\sigma}^{\alpha} y \rightarrow g x \mathbf{R}_{\tau}^{\alpha} h y\right)
\end{aligned}
$$

We can prove for any $\alpha: \mathbb{N}^{\mathbb{N}}$
(i) $t^{\mathrm{J}} \mathbf{R}_{\rho}^{\alpha} t^{\mathrm{b}}$ for any $t: \rho$ of T , and
(ii) $\tilde{\alpha} \mathbf{R}_{\mathbb{N} \rightarrow \mathbb{N}}^{\alpha} \Omega$ where $\Omega: \equiv \lambda f \alpha . \alpha(f \alpha):\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right) \rightarrow \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$.

Then for any $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ of T , we have

- $f=f^{\mathrm{b}} \Omega$ up to pointwise equality (Example I),
- $\left(f^{J} \tilde{\alpha}\right)_{2}$ is a modulus of continuity of $f^{b} \Omega$ at α.

Hence $M: \equiv \lambda \alpha \cdot\left(f^{\mathrm{J}} \tilde{\alpha}\right)_{2}$ is a modulus of continuity of f.

Example IV: bar recursion ${ }^{5}$

Let $S: \mathbb{N}^{*} \rightarrow \mathbb{Q}$ be a monotone function. We write $S(s)$ to denote $S(s)=1$. We call $\xi:\left(\mathbb{N}^{*} \rightarrow \sigma\right) \rightarrow\left(\mathbb{N}^{*} \rightarrow \sigma^{\mathbb{N}} \rightarrow \sigma\right) \rightarrow \mathbb{N}^{*} \rightarrow \sigma$ a functional of general bar recursion for S if $\mathcal{G B} \mathcal{R}_{S}(\xi)$ holds, i.e.

$$
\forall G^{\mathbb{N}^{*} \rightarrow \sigma} H^{\mathbb{N}^{*} \rightarrow \sigma^{\mathbb{N}} \rightarrow \sigma} s^{\mathbb{N}^{*}}\left\{\begin{aligned}
S(s) & \rightarrow \xi(G, H, s)=G(s) \\
& \wedge \\
\neg S(s) & \rightarrow \xi(G, H, s)=H(s, \lambda x \cdot \xi(G, H, s * x))
\end{aligned}\right\} .
$$

We say S secures $Y: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ if

$$
\forall s^{\mathbb{N}^{*}}\left(S(s) \rightarrow \forall \alpha^{\mathbb{N}^{\mathbb{N}}} Y\left(s * 0^{\omega}\right)=Y(s * \alpha)\right)
$$

Theorem [Oliva\&Steila2018]. If S secures Y, then from any functional ξ of general bar recursion for S one can construct a functional $\Phi^{Y}(\xi)$ of Spector's bar recursion for Y.

[^4]
Example IV: bar recursion - construction

We extend T with ρ^{*} and \mathcal{L}. Fix a type σ. Let

$$
\mathrm{J} \mathbb{N}: \equiv\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right) \times\left(\mathbb{N}^{*} \rightarrow \mathbb{Q}\right) \times\left(\left(\mathbb{N}^{*} \rightarrow \sigma\right) \rightarrow\left(\mathbb{N}^{*} \rightarrow \sigma^{\mathbb{N}} \rightarrow \sigma\right) \rightarrow \mathbb{N}^{*} \rightarrow \sigma\right)
$$

and write $\mathrm{V}_{x}, \mathrm{~S}_{x}, \mathrm{~B}_{x}$ to denote the three components of $x: \mathrm{JN}$. Define

$$
\begin{aligned}
\eta(n): \equiv & \langle\lambda \alpha \cdot n, \lambda s \cdot 1, \lambda G H \cdot G\rangle \\
g^{\kappa}(x): \equiv & \left\langle\lambda \alpha \cdot \mathrm{V}_{g\left(\mathrm{~V}_{x} \alpha\right)} \alpha\right. \\
& \lambda s \cdot \min \left(\mathrm{~S}_{x}(s), \mathrm{S}_{g\left(\mathrm{~V}_{x}\left(s * 0^{\omega}\right)\right)}(s)\right) \\
& \left.\lambda G H \cdot \mathrm{~B}_{x}\left(\lambda s \cdot \mathrm{~B}_{g\left(\mathrm{~V}_{x}\left(s * 0^{\omega}\right)\right)}(G, H, s), H\right)\right\rangle .
\end{aligned}
$$

We construct the generic element $\Omega: \mathrm{JN} \rightarrow \mathrm{JN}$ by

$$
\Omega: \equiv(\lambda n .\langle\lambda \alpha . \alpha n, \lambda s \cdot \operatorname{Le}(n,|s|), \Psi n\rangle)^{\kappa}
$$

where Le: $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathcal{Q}$ has value 1 iff the first argument is smaller, and $\Psi n:\left(\mathbb{N}^{*} \rightarrow \sigma\right) \rightarrow\left(\mathbb{N}^{*} \rightarrow \sigma^{\mathbb{N}} \rightarrow \sigma\right) \rightarrow \mathbb{N}^{*} \rightarrow \sigma$ is a (T-definable) functional of bar recursion for constant Y with value n ([Oliva\&Steila2018, Lemma 2.1]).

Example IV: bar recursion - correctness

Theorem. For any $Y: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ of T ,

- $\mathrm{S}_{Y^{\mathrm{J}} \Omega}$ is a monotone function securing Y, and
- $\mathrm{B}_{Y^{J} \Omega}$ is a functional of general bar recursion for $\mathrm{S}_{Y^{\mathrm{J}} \Omega}$.

Proof. Work with the logical relation $\mathbf{R}_{\rho}^{\alpha} \subseteq \rho^{\mathrm{J}} \times \rho$ parametrized by $\alpha: \mathbb{N}^{\mathbb{N}}$

$$
\begin{aligned}
w \mathbf{R}_{\mathbb{N}}^{\alpha} n & : \equiv \mathrm{V}_{w} \alpha=n \wedge \mathrm{~S}_{w} \text { secures } \mathrm{V}_{w} \wedge \mathcal{G B}_{\mathrm{S}_{w}}\left(\mathrm{~B}_{w}\right) \\
g \mathbf{R}_{\sigma \rightarrow \tau}^{\alpha} h & : \equiv \forall x y\left(x \mathbf{R}_{\sigma}^{\alpha} y \rightarrow g x \mathbf{R}_{\tau}^{\alpha} h y\right)
\end{aligned}
$$

Prove (i) $t \mathbf{R}_{\rho}^{\alpha} t^{\mathrm{J}}$ for all $t: \rho$ of T , and (ii) $\alpha \mathbf{R}_{\mathbb{N} \rightarrow \mathbb{N}}^{\alpha} \Omega$, which together bring the desired result.

Corollary. For any $Y: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ of T, the term

$$
\Phi^{Y}\left(\mathrm{~B}_{Y^{J} \Omega}\right)
$$

is a functional of Spector's bar recursion for Y.

Other variants of monadic translation

In the Kolmogorov-style ${ }^{6}$, type are translated by $\sigma^{\mathrm{Ko}}: \equiv \mathrm{J}\langle\sigma\rangle$ where

$$
\begin{aligned}
\langle\mathbb{N}\rangle & : \equiv \mathbb{N} \\
\langle\sigma \square \tau\rangle & : \equiv \mathrm{J}\langle\sigma\rangle \square \mathrm{J}\langle\tau\rangle \quad \text { for } \square \in\{\rightarrow, \times,+\}
\end{aligned}
$$

In the Kuroda-style ${ }^{7,8}$, types are translated by $\sigma^{\mathrm{Ku}}: \equiv \mathrm{J}[\sigma]$ where

$$
\begin{aligned}
{[\mathbb{N}] } & : \equiv \mathbb{N} & & {[\sigma \times \tau]: \equiv[\sigma] \times[\tau] } \\
{[\sigma \rightarrow \tau] } & \equiv[\sigma] \rightarrow \mathrm{J}[\tau] & & {[\sigma+\tau]: \equiv[\sigma]+[\tau] }
\end{aligned}
$$

Both require nonstandard notions of application when translating function application.

[^5]
Summary

- We introduce a syntactic translation of T , parametrized by a notion of nucleus relative to T , in the style of Gentzen.
- Working with different nuclei, we construct
- majorants,
- moduli of continuity, and
- general bar recursion functionals
of T-definable functions directly via the translation.
- Preprint: arXiv:1908.05979 [cs.LO]
- All the above work has been implemented in Agda, which is available at
http://cj-xu.github.io/agda/ModTrans/index.html

Thank you! Questions and comments are very appreciated!

[^0]: ${ }^{2}$ B. van den Berg, A Kuroda-style j-translation, Archive for Mathematical Logic 58 (5-6) (2019) 627-634.

[^1]: ${ }^{2} \mathrm{C} . \mathrm{Xu}, A$ syntactic approach to continuity of T-definable functionals, arXiv:1904.09794 [math.LO] (2019).

[^2]: ${ }^{3}$ W. A. Howard. Hereditarily majorizable functionals of finite type. In Metamathematical investigation of intuitionistic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics, pages 454-461. Springer, Berlin, 1973.

[^3]: ${ }^{4}$ M. H. Escardó, Continuity of Gödel's system T functionals via effectful forcing, MFPS'2013. Electronic Notes in Theoretical Computer Science 298 (2013), 119-141.

[^4]: ${ }^{5}$ P. Oliva, S. Steila, A direct proof of Schwichtenberg's bar recursion closure theorem, The Journal of Symbolic Logic 83 (1) (2018) 70-83.

[^5]: ${ }^{6} \mathrm{~T}$. Uustalu, Monad translating inductive and coinductive types, in: Types for Proofs and Programs (TYPES 2002). Lecture Notes in Computer Science, vol 2646, Springer, 2002, pp. 299-315.
 ${ }^{7}$ T. Coquand and G. Jaber. A computational interpretation of forcing in type theory. Epistemology versus Ontology, volume 27, pages 203-213. Springer Netherlands, 2012.
 ${ }^{8} \mathrm{~T}$. Powell, A functional interpretation with state, in: Proceedings of the Thirty third Annual IEEE Symposium on Logic in Computer Science (LICS 2018), IEEE Computer Society Press, 2018, pp. 839-848.

