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Historical developements

• Bishop was not particularly satisfied with the generality of
the measure theory (BMT) developed in [Bishop, 1967]

• Bishop-Cheng measure theory (BCMT) is developed in
[Bishop and Cheng, 1972] and extended in chapter 6 of
[Bishop and Bridges, 1985]



Recent developments

• Pointfree, algebraic approach to constructive measure
theory in [Coquand and Palmgren, 2002] and
[Spitters, 2005], [Spitters, 2006] to avoid
impredicativities.

• Recent work: Formalization in Coq, see [Semeria, 2019].
A metric approach in [Ishihara, 2017] and constructive
probability theory in [Chan, 2019]



Goal

• Work within BISH

• Using tools from Bishop’s set theory, i.e. set-indexed
families

• Towards a predicative formulation of BCMT



A partial function from X to Y is a triple (A, iA, f ) where
(A, iA) is a subset of X and f : A→ Y is a function, we write
f : X ⇀ Y .

The totality F⇀(X ,Y ) of partial functions is not a set as this
would imply that P(X ) would be a set as well. We write

F(X ) := F⇀(X ,R)

for the totality of real-valued partial functions.



Two partial functions (A, iA, f ), (B , iB , g) are equal if there are
functions ϕ : A→ B and ψ : B → A s.t. the following
diagrams commute
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In this case we write (ϕ, ψ) : (A, iA, f ) =F⇀(X ,Y ) (B , iB , g).



Let X be a set with an inequality 6=X , a complemented subset
of X is a quadruple (A, iA,B , iB) where (A, iA) and (B , iB) are
subsets of X s.t.

∀a ∈ A ∀b ∈ B : iA(a) 6=X iB(b)

For any complemented subset A = (A1,A0) the characteristic
function χA : A1 ∪ A0 → 2 is defined as

χA(x) :=

{
1, if x ∈ A1

0, if x ∈ A0



For A = (A1,A0) and B = (B1,B0) we have operations

• A ∧B :=
(
A1 ∩ B1, (A1 ∩ B0) ∪ (A0 ∩ B1) ∪ (A0 ∩ B0)

)
• A ∨B :=

(
(A1 ∩ B0) ∪ (A0 ∩ B1) ∪ (A1 ∩ B1), A0 ∩ B0

)
• −A := (A0,A1) Note that −−A = A

Two complementes subsets A = (A1,A0) and B = (B1,B0)
are equal if

A =P][(X ) B :⇔ A1 =P(X ) B
1 & A0 =P(X ) B

0

Again, the totality P ][(X ) of complemented subsets of X is
not a set.



Families of complemented subsets

Let X have a fixed apartness relation 6=X , a family of
complemented subsets of X indexed by I is a sextuple

λ = (λ1
0, E1, λ1

1, λ
0
0, E0, λ0

1)

where λ1 = (λ1
0, E1, λ1

1) and λ0 = (λ0
0, E0, λ0

1) are I -families of
subsets s.t.

∀i ∈ I ∀x ∈ λ1
0(i) ∀y ∈ λ0

0(i) : ε1
i (x) 6=X ε0

i (y)

i.e. for all i ∈ I we have a complemented subset

λ0(i) :=
(
λ1

0(i), λ0
0(i)
)



Families of partial functions

A family of partial functions from X to Y indexed by I is a
quadruple Λ = (λ0, E , λ1,F ), where

• λΛ = (λ0, E , λ1) is an I -family of subsets of X

• F :
c

i∈I F(λ0(i),Y ) where fi := F (i)

s.t. for i =I j the following diagrams commute
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Impredicativities in Bishop-Cheng

measure theory

1 A measure space contains a set of complemented subsets,
an integration space contains a set of partial functions.

2 The definition of a measure space contains quantifiers
over all complemented subsets, thus presupposing that
P ][(X ) is a set.

3 The definition of the complete extension of an integration
space takes the totality of integrable function L1 to be a
set, thus presupposing that F(X ) is a set.



Avoiding impredicativities I

An I -family λ = (λ1
0, E1, λ1

1, λ
0
0, E0, λ0

1) of complemented
subsets is called an I -set of complemented subsets if

∀i , j ∈ I : λ0(i) =P][(X ) λ0(j) ⇔ i =I j

A measure space is thus actually a quadruple (X , I ,λ, µ)
where the index set is implicitly given.

An I -family Λ = (λ0, E , λ1,F ) of partial functions is called an
I -set of partial functions if

∀i , j ∈ I : fi =F(X ) fj ⇔ i =I j

An integration space is thus actually a quadruple (X , I ,Λ,
∫

)
where the index set is implicitly given.



Avoiding impredicativities II

In [Bishop, 1967, p.183] problem 2 is avoided:

“Let F be any family of complemented subsets of X [...] Let
M be a subfamily of F closed under finite unions,
intersections, and differences. Let the function µ : M→ R0+

satisfy the following conditions [...]”

A measure space is of the form (X , I ,λ, J ,ν, µ), where λ is an
I -family and ν is a J-family of complemented subsets s.t. λ is
a subfamily of ν.

Quantification over P ][(X ) is replaced by quantification over J .



Bishop’s proposal

on formalization in “Mathematics as a numerical language”

“A measure space is a family M≡ {At}t∈T of complemented
subsets of a set X [...], a map µ : T → R0+ and an additional
structure as follows: [...] If t and s are in T , there exists an
element s ∨ t of T such that As∨t < At ∪ As . Similarly, there
exist operations ∧ and ∼ on T , corresponding to the
set-theoretic operations ∩ and −.”

- [Bishop, 1970, p. 67]



Pre-measure space

Let X be a set with an apartness-relation 6=X , I , J sets,

• λ = (λ1
0, λ

1
1, E1, λ0

0, λ
0
1, E0) an I -set

• ν = (ν1
0 , ν

1
1 ,E

1, ν0
0 , ν

0
1 ,E

0) a J-set of complemented
subsets of X

s.t. λ is a subfamily of ν (i.e. we have an embedding
h : I ↪→ J) and µ : I → R≥0 a function.



Furthermore, assume that we have assignment routines
∧ : J × J  J , ∨ : J × J  J and ∼: J  J , as well as
∧ : I × I  I , ∨ : I × I  I and ∼: I × I  I s.t. for all
i , j ∈ I we have

• h(i ∧ j) =J h(i) ∧ h(j)

• h(i ∨ j) =J h(i) ∨ h(j)

• h(i ∼ j) =J h(i)∧ ∼ h(j)

Then (X , I ,λ, J ,ν, µ) is a pre-measure space if the following
conditions hold:



1 ∀i , j ∈ J we have
• ν0(i ∧ j) =P][(X )

ν0(i) ∧ ν0(j)
• ν0(i ∨ j) =P][(X )

ν0(i) ∨ ν0(j)
• ν0(∼ i) =P][(X )

−ν0(i)

and for i , j ∈ I we have that
µ(i) + (j) =R µ(i ∨ j) + µ(i ∧ j).

2 ∀i ∈ I ∀j ∈ J : If there is a k ∈ I s.t. h(k) =J h(i) ∧ j ,
then there exist l ∈ I s.t. h(l) =J h(i)∧ ∼ j and
µ(i) =R µ(k) + µ(l).

3 ∃i ∈ I s.t. µ(i) > 0.

4 ∀α ∈ F(N, I ) : If ` := limm→∞ µ(
∧m

n=1 αn) exists and
` > 0, then there is a x ∈

⋂
n∈N λ

1
0(αn)

(i.e.
⋂

n∈N λ
1
0(αn) is inhabited).



Pre-integration space

(of partial functions)

Let X be a set, I a set, Λ = (λ0, λ1, E ,F ) an I -set of
real-valued partial functions and

∫
: I → R a function.

Furthermore, assume that we have assignment routines

· : R× I  I

+ : I × I  I

| | : I  I

∧1 : I  I

Then (X , I ,Λ,
∫

) is called a pre-integration space if the
following conditions hold



1 ∀i , j ∈ I ∀a, b ∈ R we have
• fa·i+b·j =F(X ) afi + bfj
• f|i | =F(X ) |fi |
• f∧1(i) =F(X ) fi ∧ 1

and we have that
∫

(a · i + b · j) =R a
∫
i + b

∫
j

2 ∀i ∈ I ∀α ∈ F(N, I ) s.t.
• ∀m ∈ N : fαm ≥ 0
• ` :=

∑∞
k=1

∫
αk exists and ` <

∫
i

there is x ∈ λ0(i)∩
(⋂

n∈N λ0(αn)
)

s.t. `′ :=
∑∞

k=1 fαk
(x)

exists and `′ < fi(x).

3 ∃i ∈ I s.t.
∫
i =R 1

4 ∀i ∈ I ∀α, β ∈ F(N, I ) s.t.
αm =I m · (∧1(m−1 · i)) and βm =I m

−1 · (∧1(m · |i |)) for
all m ∈ N, we have that
` := limn→∞

∫
αn and `′ := limn→∞

∫
βn exist and

` =R
∫
i and `′ =R 0.



Working with pre-integration spaces

and pre-measure spaces

What we can do so far

• Give concrete examples of pre-measure spaces (set of
detachable subsets with Dirac measure)

• Construct the pre-integration space of simple functions
over a pre-measure space

• Construct a predicative version of the complete extension
of a pre-integration space.



1-Norm

Let(X , I ,Λ,
∫

) be a pre-integration space

i =∫ j :⇔
∫
|i − j | =R 0

defines an equality on I and (I ,=∫ ) is a R-vector space.
Moreover the assignment routine ‖ ‖1 : I  R≥0 with
‖i‖1 :=

∫
|i | is a function and defines a norm on (I ,=∫ ).

Goal: Find extended pre-integration space (X , I1,Λ1,
∫

) s.t. I1
is the metric completion w.r.t. the norm ‖ ‖1.



Set of representations

I1 :=

{
α ∈ F(N, I ) :

∞∑
n=1

∫
|αn| exists

}
together with the equality

α =I1 β :⇔
(
Fα, eFα ,

∑
n

fαn

)
=F(X )

(
Fβ, eFβ ,

∑
n

fβn

)
where

Fα :=

{
x ∈

⋂
n

λ0

(
αn

)
:
∑
n

|fαn(x)| exists

}
and Fβ is defined accordingly.



Canonically integrable functions

We define the set of canonically integrable functions (see
[Spitters, 2002, p. 24]) to be

The I1-set of partial functions Λ1 = (ν0, ν1,E ,G ) s.t.

• ν0(α) := Fα
• G (α) := gα :=

∑
n fαn

Through the embedding

e : I ↪→ I1

i 7→ (i , 0 · i , 0 · i , ...)

Λ becomes a subfamily of Λ1



Avoiding impredicativities III

The assignment routine
∫

: I1  R with
∫
α :=

∑
n

∫
αn, is a

function that is compatible with the embedding e.

Theorem
(X , I1,Λ1,

∫
) is a pre-integration space and (I1, ‖ ‖1) is a

complete metric space s.t. (I , ‖ ‖1) is a dense subspace via
the emedding e.

Note: This is a completely predicative description of the
complete extension that doesn’t make use of the notion of an
integrable function or a full set.



Lebesgue’s series theorem (2.15)

Theorem
Let Γ ∈ F(N, I1) s.t.

∑
n

∫
|Γn| exists. Then there is a α ∈ I1

s.t.

ν0(α) ⊆ { x ∈
⋂
n

ν0

(
Γn

)
:
∑
n

|g Γn(x)| exists }

and ∀x ∈ ν0(α) : gα(x) =
∑
n

g Γn(x)

Furthermore, for any α ∈ I1 fulfilling the above condition we
have

lim
N→∞

∫
|α−

N∑
n=1

Γn| = 0



Thank you!



Detachable subsets

Let X be inhabited and define for 2 := {0, 1}

x 6=X y :⇔ ∃f ∈ F(X , 2) s.t. f (x) 6= f (y)

Define for f , g ∈ F(X , 2)

• f ∧ g := fg

• f ∨ g := f + g − fg

• ∼ f := 1− f



Let I := J := F(X , 2) and let δ = (δ1
0, E1, δ1

1, δ
0
0, E0, δ0

1) be the
F(X , 2)-family of complemented subset of (X , 6=X ) s.t.

• δ1
0 := {x ∈ X : f (x) = 1}

• δ0
0 := {x ∈ X : f (x) = 0}

Let x0 ∈ X and define

µx0 : I → R≥0

f 7→ f (x0)

Then (X , I , δ, J , δ, µx0) is a pre-measure space.



Simple functions

Let (X , I ,λ, J ,ν, µ) be a pre-measure space. Define

S(I ) :=
∑
n∈N

(R× I )n

i.e. S(I ) is the set of finite sequences of pairs of coefficients in
R and indices in I , together with the equality

(ak , ik)nk=1 =S(I ) (b`, j`)
m
`=1 :⇔

n∑
k=1

ak · χλ0(ik ) =F(X )

m∑
`=1

b` · χλ0(j`)



Let Λλ = (λ0, E , λ1,F ) be the S(I )-family of (real-valued)
partial functions, s.t. for v :=

∑n
k=1 ak · χλ0(ik ) ∈ S(I )

• λ0(v) :=
⋂n

k=1

(
λ1

0(ik) ∪ λ0
0(ik)

)
• fv :=

∑n
k=1 ak · χλ0(ik )

Define
∫
v dµ :=

∑n
k=1 ak · µ(ik)

Then (X , S(I ),Λλ,
∫

dµ) is a pre-integration space.
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