Families of Sets in Constructive Measure Theory

Max Zeuner (j.w.w. losif Petrakis)

MIoC 19

Stockolm, 22.09.2019

Outline

1 Motivation

- 2 Partial functions and complemented subsets in Bishop's set theory
- **3** Set-indexed families of partial functions and complemented subsets
- **4** Impredicativities in Bishop-Cheng measure theory
- **5** Pre-measure and pre-integration spaces

Historical developements

- Bishop was not particularly satisfied with the generality of the measure theory (**BMT**) developed in [Bishop, 1967]
- Bishop-Cheng measure theory (BCMT) is developed in [Bishop and Cheng, 1972] and extended in chapter 6 of [Bishop and Bridges, 1985]

Recent developments

- Pointfree, algebraic approach to constructive measure theory in [Coquand and Palmgren, 2002] and [Spitters, 2005], [Spitters, 2006] to avoid impredicativities.
- Recent work: Formalization in Coq, see [Semeria, 2019].
 A metric approach in [Ishihara, 2017] and constructive probability theory in [Chan, 2019]

Goal

- Work within **BISH**
- Using tools from Bishop's set theory, i.e. set-indexed families
- Towards a predicative formulation of **BCMT**

A partial function from X to Y is a triple (A, i_A, f) where (A, i_A) is a subset of X and $f : A \to Y$ is a function, we write $f : X \to Y$.

The totality $\mathbb{F}^{\rightarrow}(X, Y)$ of partial functions is not a set as this would imply that $\mathcal{P}(X)$ would be a set as well. We write

$$\mathcal{F}(X) := \mathbb{F}^{\rightharpoonup}(X, \mathbb{R})$$

for the totality of real-valued partial functions.

Two partial functions $(A, i_A, f), (B, i_B, g)$ are equal if there are functions $\varphi : A \to B$ and $\psi : B \to A$ s.t. the following diagrams commute



In this case we write $(\varphi, \psi) : (A, i_A, f) =_{\mathbb{F}^{\rightarrow}(X,Y)} (B, i_B, g).$

Let X be a set with an inequality \neq_X , a complemented subset of X is a quadruple (A, i_A, B, i_B) where (A, i_A) and (B, i_B) are subsets of X s.t.

$$\forall a \in A \ \forall b \in B : i_A(a) \neq_X i_B(b)$$

For any complemented subset $\mathbf{A} = (A^1, A^0)$ the characteristic function $\chi_{\mathbf{A}} : A^1 \cup A^0 \to \mathbf{2}$ is defined as

$$\chi_{\mathcal{A}}(x) := egin{cases} 1, \ ext{if } x \in \mathcal{A}^1 \ 0, \ ext{if } x \in \mathcal{A}^0 \end{cases}$$

For
$$A = (A^1, A^0)$$
 and $B = (B^1, B^0)$ we have operations
• $A \wedge B := (A^1 \cap B^1, (A^1 \cap B^0) \cup (A^0 \cap B^1) \cup (A^0 \cap B^0))$
• $A \vee B := ((A^1 \cap B^0) \cup (A^0 \cap B^1) \cup (A^1 \cap B^1), A^0 \cap B^0)$
• $-A := (A^0, A^1)$ Note that $- - A = A$

Two complementes subsets $\mathbf{A} = (A^1, A^0)$ and $\mathbf{B} = (B^1, B^0)$ are equal if

$$\boldsymbol{A} =_{\mathcal{P}^{|I|}(X)} \boldsymbol{B} \iff A^1 =_{\mathcal{P}(X)} B^1 \& A^0 =_{\mathcal{P}(X)} B^0$$

Again, the totality $\mathcal{P}^{l}(X)$ of complemented subsets of X is not a set.

Families of complemented subsets

Let X have a fixed apartness relation \neq_X , a family of complemented subsets of X indexed by I is a sextuple

$$\boldsymbol{\lambda} = (\lambda_0^1, \mathcal{E}^1, \lambda_1^1, \lambda_0^0, \mathcal{E}^0, \lambda_1^0)$$

where $\lambda^1 = (\lambda_0^1, \mathcal{E}^1, \lambda_1^1)$ and $\lambda^0 = (\lambda_0^0, \mathcal{E}^0, \lambda_1^0)$ are *I*-families of subsets s.t.

$$\forall i \in I \ \forall x \in \lambda_0^1(i) \ \forall y \in \lambda_0^0(i) : \ \varepsilon_i^1(x) \neq_X \varepsilon_i^0(y)$$

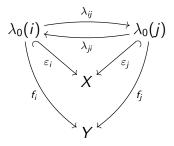
i.e. for all $i \in I$ we have a complemented subset

$$\boldsymbol{\lambda}_0(i) := \left(\lambda_0^1(i), \lambda_0^0(i)\right)$$

Families of partial functions

A family of partial functions from X to Y indexed by I is a quadruple $\Lambda = (\lambda_0, \mathcal{E}, \lambda_1, F)$, where

- $\lambda_{\Lambda} = (\lambda_0, \mathcal{E}, \lambda_1)$ is an *I*-family of subsets of X
- $F: \prod_{i \in I} \mathbb{F}(\lambda_0(i), Y)$ where $f_i := F(i)$
- s.t. for $i =_I j$ the following diagrams commute



Impredicativities in Bishop-Cheng measure theory

- A measure space contains a set of complemented subsets, an integration space contains a set of partial functions.
- The definition of a measure space contains quantifiers over all complemented subsets, thus presupposing that *P*^I(*X*) is a set.
- **3** The definition of the complete extension of an integration space takes the totality of integrable function L_1 to be a set, thus presupposing that $\mathcal{F}(X)$ is a set.

Avoiding impredicativities I

An *I*-family $\lambda = (\lambda_0^1, \mathcal{E}^1, \lambda_1^1, \lambda_0^0, \mathcal{E}^0, \lambda_1^0)$ of complemented subsets is called an *I*-set of complemented subsets if

$$\forall i,j \in I: \ \boldsymbol{\lambda}_0(i) =_{\mathcal{P}^{\mathrm{ll}}(X)} \boldsymbol{\lambda}_0(j) \ \Leftrightarrow \ i =_I j$$

A measure space is thus actually a quadruple (X, I, λ, μ) where the index set is implicitly given.

An *I*-family $\Lambda = (\lambda_0, \mathcal{E}, \lambda_1, F)$ of partial functions is called an *I*-set of partial functions if

$$\forall i, j \in I : f_i =_{\mathcal{F}(X)} f_j \iff i =_I j$$

An integration space is thus actually a quadruple (X, I, Λ, f) where the index set is implicitly given.

Avoiding impredicativities II

In [Bishop, 1967, p.183] problem 2 is avoided:

"Let \mathfrak{F} be any family of complemented subsets of X [...] Let \mathfrak{M} be a subfamily of \mathfrak{F} closed under finite unions, intersections, and differences. Let the function $\mu : \mathfrak{M} \to \mathbb{R}^{0+}$ satisfy the following conditions [...]"

A measure space is of the form $(X, I, \lambda, J, \nu, \mu)$, where λ is an *I*-family and ν is a *J*-family of complemented subsets s.t. λ is a subfamily of ν .

Quantification over $\mathcal{P}^{l}(X)$ is replaced by quantification over J.

Bishop's proposal

on formalization in "Mathematics as a numerical language"

"A measure space is a family $\mathcal{M} \equiv \{A_t\}_{t \in T}$ of complemented subsets of a set X [...], a map $\mu : T \to \mathbb{R}^{0+}$ and an additional structure as follows: [...] If t and s are in T, there exists an element $s \lor t$ of T such that $A_{s \lor t} < A_t \cup A_s$. Similarly, there exist operations \land and \sim on T, corresponding to the set-theoretic operations \cap and -."

- [Bishop, 1970, p. 67]

Pre-measure space

Let X be a set with an apartness-relation \neq_X , I, J sets,

- $\boldsymbol{\lambda} = (\lambda_0^1, \lambda_1^1, \mathcal{E}^1, \lambda_0^0, \lambda_1^0, \mathcal{E}^0)$ an *I*-set
- $\boldsymbol{\nu} = (\nu_0^1, \nu_1^1, E^1, \nu_0^0, \nu_1^0, E^0)$ a *J*-set of complemented subsets of *X*

s.t. λ is a subfamily of ν (i.e. we have an embedding $h: I \hookrightarrow J$) and $\mu: I \to \mathbb{R}_{\geq 0}$ a function.

Furthermore, assume that we have assignment routines $\land : J \times J \rightsquigarrow J, \lor : J \times J \rightsquigarrow J$ and $\sim : J \rightsquigarrow J$, as well as $\land : I \times I \rightsquigarrow I, \lor : I \times I \rightsquigarrow I$ and $\sim : I \times I \rightsquigarrow I$ s.t. for all $i, j \in I$ we have

•
$$h(i \wedge j) = J h(i) \wedge h(j)$$

•
$$h(i \lor j) = J h(i) \lor h(j)$$

•
$$h(i \sim j) =_J h(i) \land \sim h(j)$$

Then $(X, I, \lambda, J, \nu, \mu)$ is a pre-measure space if the following conditions hold:

Pre-integration space (of partial functions)

Let X be a set, I a set, $\Lambda = (\lambda_0, \lambda_1, \mathcal{E}, F)$ an I-set of real-valued partial functions and $\int : I \to \mathbb{R}$ a function. Furthermore, assume that we have assignment routines

$$_\cdot_: \mathbb{R} \times I \rightsquigarrow I$$
$$_+_: I \times I \rightsquigarrow I$$
$$|_|: I \rightsquigarrow I$$
$$\land_1: I \rightsquigarrow I$$

Then (X, I, Λ, \int) is called a pre-integration space if the following conditions hold

1 $\forall i, j \in I \ \forall a, b \in \mathbb{R}$ we have

•
$$f_{a\cdot i+b\cdot j} =_{\mathcal{F}(X)} af_i + bf_j$$

•
$$f_{|i|} =_{\mathcal{F}(X)} |f_i|$$

• $f_{\wedge_1(i)} =_{\mathcal{F}(X)} f_i \wedge 1$

and we have that $\int (a \cdot i + b \cdot j) =_{\mathbb{R}} a \int i + b \int j$ $\forall i \in I \forall \alpha \in \mathbb{R}(\mathbb{N} | I)$ st

 $\forall i \in I \ \forall \alpha \in \mathbb{F}(\mathbb{N}, I) \text{ s.t.}$ $\forall m \in \mathbb{N} \cdot f > 0$

•
$$\forall m \in \mathbb{N} : f_{\alpha_m} \geq 0$$

•
$$\ell := \sum_{k=1}^{\infty} \int \alpha_k$$
 exists and $\ell < \int i$

there is $x \in \lambda_0(i) \cap \left(\bigcap_{n \in \mathbb{N}} \lambda_0(\alpha_n)\right)$ s.t. $\ell' := \sum_{k=1}^{\infty} f_{\alpha_k}(x)$ exists and $\ell' < f_i(x)$.

3
$$\exists i \in I$$
 s.t. $\int i =_{\mathbb{R}} 1$

Working with pre-integration spaces and pre-measure spaces

What we can do so far

- Give concrete examples of pre-measure spaces (set of detachable subsets with Dirac measure)
- Construct the pre-integration space of simple functions over a pre-measure space
- Construct a predicative version of the complete extension of a pre-integration space.

1-Norm

Let(X, I, Λ, \int) be a pre-integration space

$$i =_{\int} j :\Leftrightarrow \int |i-j| =_{\mathbb{R}} 0$$

defines an equality on I and $(I, =_{\int})$ is a \mathbb{R} -vector space. Moreover the assignment routine $\|_{-}\|_{1} : I \rightsquigarrow \mathbb{R}_{\geq 0}$ with $\|i\|_{1} := \int |i|$ is a function and defines a norm on $(I, =_{\int})$.

Goal: Find extended pre-integration space $(X, I_1, \Lambda_1, \int)$ s.t. I_1 is the metric completion w.r.t. the norm $\|_{-}\|_{1}$.

Set of representations

$$I_1 := \left\{ \ \alpha \in \mathbb{F}(\mathbb{N}, I) \ : \ \sum_{n=1}^{\infty} \int |\alpha_n| \text{ exists }
ight\}$$

together with the equality

$$\alpha =_{I_1} \beta \iff \left(F_{\alpha}, e_{F_{\alpha}}, \sum_n f_{\alpha_n} \right) =_{\mathcal{F}(X)} \left(F_{\beta}, e_{F_{\beta}}, \sum_n f_{\beta_n} \right)$$

where

$$F_{lpha} := \left\{ x \in \bigcap_{n} \lambda_0(lpha_n) : \sum_{n} |f_{lpha_n}(x)| \text{ exists }
ight\}$$

and F_{β} is defined accordingly.

Canonically integrable functions

We define the set of canonically integrable functions (see [Spitters, 2002, p. 24]) to be

The I_1 -set of partial functions $\Lambda_1 = (\nu_0, \nu_1, E, G)$ s.t.

•
$$\nu_0(\alpha) := F_\alpha$$

•
$$G(\alpha) := g_{\alpha} := \sum_{n} f_{\alpha_{n}}$$

Through the embedding

$$e: I \hookrightarrow I_1$$
$$i \mapsto (i, 0 \cdot i, 0 \cdot i, ...)$$

 Λ becomes a subfamily of Λ_1

Avoiding impredicativities III

The assignment routine $\int : I_1 \rightsquigarrow \mathbb{R}$ with $\int \alpha := \sum_n \int \alpha_n$, is a function that is compatible with the embedding *e*.

Theorem $(X, I_1, \Lambda_1, \int)$ is a pre-integration space and $(I_1, \|_-\|_1)$ is a complete metric space s.t. $(I, \|_-\|_1)$ is a dense subspace via the emedding e.

Note: This is a completely predicative description of the complete extension that doesn't make use of the notion of an integrable function or a full set.

Lebesgue's series theorem (2.15)

Theorem Let $\Gamma \in \mathbb{F}(\mathbb{N}, I_1)$ s.t. $\sum_n \int |\Gamma_n|$ exists. Then there is a $\alpha \in I_1$ s.t.

$$\nu_0(\alpha) \subseteq \{ x \in \bigcap_n \nu_0(\Gamma_n) : \sum_n |g_{\Gamma_n}(x)| \text{ exists } \}$$

and $\forall x \in \nu_0(\alpha) : g_\alpha(x) = \sum_n g_{\Gamma_n}(x)$

Furthermore, for any $\alpha \in I_1$ fulfilling the above condition we have

$$\lim_{N\to\infty}\int |\alpha-\sum_{n=1}^N \Gamma_n|=0$$

Thank you!

Detachable subsets

Let X be inhabited and define for $\mathbf{2} := \{0, 1\}$

$$x \neq_X y : \Leftrightarrow \exists f \in \mathbb{F}(X, \mathbf{2}) \text{ s.t. } f(x) \neq f(y)$$

Define for $f, g \in \mathbb{F}(X, 2)$

- $f \wedge g := fg$
- $f \lor g := f + g fg$
- $\sim f := 1 f$

Let $I := J := \mathbb{F}(X, \mathbf{2})$ and let $\delta = (\delta_0^1, \mathcal{E}^1, \delta_1^1, \delta_0^0, \mathcal{E}^0, \delta_1^0)$ be the $\mathbb{F}(X, \mathbf{2})$ -family of complemented subset of (X, \neq_X) s.t.

•
$$\delta_0^1 := \{x \in X : f(x) = 1\}$$

• $\delta_0^0 := \{x \in X : f(x) = 0\}$

Let $x_0 \in X$ and define

$$\mu_{x_0}: I o \mathbb{R}_{\geq 0}$$

 $f \mapsto f(x_0)$

Then $(X, I, \delta, J, \delta, \mu_{x_0})$ is a pre-measure space.

Simple functions

Let $(X, I, \lambda, J, \nu, \mu)$ be a pre-measure space. Define

$$S(I) := \sum_{n \in \mathbb{N}} (\mathbb{R} \times I)^n$$

i.e. S(I) is the set of finite sequences of pairs of coefficients in \mathbb{R} and indices in I, together with the equality

$$(a_k, i_k)_{k=1}^n =_{\mathcal{S}(I)} (b_\ell, j_\ell)_{\ell=1}^m \iff \sum_{k=1}^n a_k \cdot \chi_{\lambda_0(i_k)} =_{\mathcal{F}(X)} \sum_{\ell=1}^m b_\ell \cdot \chi_{\lambda_0(j_\ell)}$$

Let $\Lambda_{\lambda} = (\lambda_0, \mathcal{E}, \lambda_1, F)$ be the S(I)-family of (real-valued) partial functions, s.t. for $v := \sum_{k=1}^{n} a_k \cdot \chi_{\lambda_0(i_k)} \in S(I)$

•
$$\lambda_0(\mathbf{v}) := \bigcap_{k=1}^n \left(\lambda_0^1(i_k) \cup \lambda_0^0(i_k) \right)$$

•
$$f_{\mathbf{v}} := \sum_{k=1}^{n} \mathbf{a}_k \cdot \chi_{\boldsymbol{\lambda}_0(i_k)}$$

Define
$$\int \mathbf{v} \ d\mu := \sum_{k=1}^{n} \mathbf{a}_k \cdot \mu(\mathbf{i}_k)$$

Then $(X, S(I), \Lambda_{\lambda}, \int d\mu)$ is a pre-integration space.

Bishop, E. (1967).

Foundations of constructive analysis.

McGraw-Hill series in higher mathematics. McGraw-Hill.

Bishop, E. (1970).

Mathematics as a numerical language.

In *Studies in Logic and the Foundations of Mathematics*, volume 60, pages 53–71. Elsevier.

- Bishop, E. and Bridges, D. S. (1985).
 Constructive Analysis, volume 279 of Grundlehren der math. Wissenschaften.
 Springer-Verlag, Heidelberg-Berlin-New York.
- Bishop, E. and Cheng, H. (1972). Constructive measure theory, volume 116. American Mathematical Soc.
- Chan, Y.-K. (2019).

Foundations of constructive probability theory.

arXiv preprint arXiv:1906.01803.

Coquand, T. and Palmgren, E. (2002).
 Metric boolean algebras and constructive measure theory.
 Arch. Math. Log., 41:687–704.

Ishihara, H. (2017).

A constructive theory of integration – a metric approach. unpublished note.

Semeria, V. (2019).

Definition of constructive integral and the plc integration space.

https://github.com/coq/coq/pull/9185.

Spitters, B. (2002).

Constructive and intuitionistic integration theory and functional analysis.

PhD thesis, University of Nijmegen.

Spitters, B. (2005).

Constructive algebraic integration theory without choice. In Coquand, T., Lombardi, H., and Roy, M.-F., editors, *Mathematics, Algorithms, Proofs*, number 05021. Dagstuhl.

Spitters, B. (2006).

Constructive algebraic integration theory.

Annals of Pure and Applied Logic, 137(1-3):380–390.