An algebraic proof of the Frobenius condition

Steve Awodey¹

Erik Palmgren Memorial Conference November 2020

¹Thanks to the Norwegian Center for Advanced Studies

Weak factorization systems

Definition

A weak factorization system on a category \mathcal{E} consists of two classes of maps $(\mathcal{L}, \mathcal{R})$, both closed under retracts, such that:

(i) Every map $f : A \longrightarrow B$ factors as a map in \mathcal{L} followed by one in \mathcal{R} .

 (ii) In any commutative square with an *L*-map on the left and an *R*-map on the right, there is a diagonal filler making the diagram commute.

Frobenius

Such structures are part of the definition of a Quillen model category. They are also used to model identity types in HoTT. For that one also needs the following.

Definition

A weak factorization system $(\mathcal{L}, \mathcal{R})$ has the *Frobenius property* if the left maps are stable under pullback along the right maps.

This condition is equivalent to also modelling Π -types.

Frobenius and Π

The proof uses the following fact about a wfs $(\mathcal{L},\mathcal{R})$ on an LCC $\mathcal{E}.$ Lemma

For any map $f: Y \longrightarrow X$ with base change $f^* \dashv f_* : \mathcal{E}/Y \longrightarrow \mathcal{E}/X$,

 f^* preserves \mathcal{L} iff f_* preserves \mathcal{R} .

Proof.

Suppose f^* preserves \mathcal{L} , and let $g : C \longrightarrow D$ in \mathcal{E}/Y be an \mathcal{R} -map. Test f_*g against any $c : A \rightarrowtail B$ in \mathcal{L} as on the right below.

By adjointness and f^* preserves \mathcal{L} , we get a diagonal filler as on the left above; thus there is also one on the right.

Frobenius and Π

Corollary

Suppose \mathcal{E} is LCC and the wfs $(\mathcal{L}, \mathcal{R})$ has the Frobenius property. Then \mathcal{R} is closed under dependent products (Π -types).

Quillen model structures

Definition

A Quillen model structure on $\mathcal E$ consists of three classes

 $(\mathcal{C},\mathcal{W},\mathcal{F})$

called cofibrations, weak equivalences, and fibrations, such that:

(i)
$$(\mathcal{C}, \mathcal{W} \cap \mathcal{F})$$
 and $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ are wfs.

(ii) \mathcal{W} has the 3-for-2 property.

Let $\mathsf{TFib} = \mathcal{W} \cap \mathcal{F}$ ("trivial fibrations"), and $\mathsf{TCof} = \mathcal{C} \cap \mathcal{W}$ ("trivial cofibrations").

QMS and Frobenius

Corollary

Suppose \mathcal{E} is an LCC with QMS $(\mathcal{C}, \mathcal{W}, \mathcal{F})$.

- 1. *C* is stable under all pullbacks iff TFib is stable under all pushforwards
- 2. (TCof, *F*) has Frobenius iff *F* has dependent products.
- If C is stable under pullbacks along F, then: (TCof, F) has Frobenius iff W is stable under pullback along F ("right proper").

Thus an LCC with a QMS satisfying Frobenius will model MLTT with Σ , Π , Id when taking the fibrations \mathcal{F} as the types.

QMS from a premodel

Definition

A premodel in a topos ${\mathcal E}$ consists of $(\Phi, {\mathbb I}, {\mathsf V})$ where:

- · $\Phi \hookrightarrow \Omega$ is a representable class of monos (satisfying ...).
- · $1 \rightrightarrows \mathbb{I}$ is an interval (satisfying ...).
- $\cdot \ \dot{V} \rightarrow V$ is a universe (satisfying ...).

Previous work by (A., Coquand, Orton-Pitts, Sattler) provides:

Construction

From a premodel (Φ, \mathbb{I}, V) one can construct a QMS $(\mathcal{C}, \mathcal{W}, \mathcal{F})$.

The goal for today is to show:

Theorem

This model structure has Frobenius (and so is right proper).

The cofibration wfs (C, TFib)

The *cofibrations* C are the monos $C \rightarrow Z$ classified by $\Phi \hookrightarrow \Omega$.

Note that C is therefore stable under all pullbacks.

The cofibration wfs (C, TFib)

The generic cofibration $1 \rightarrowtail \Phi$ determines a polynomial endofunctor,

$$X^+ := \sum_{\varphi:\Phi} X^{[\varphi]}.$$

This is a (fibered) monad,

$$+: \mathcal{E} \longrightarrow \mathcal{E},$$

by the *dominance* condition assumed on Φ .

The unit $\eta: X \longrightarrow X^+$ classifies cofibrant-partial maps into X.

The cofibration wfs (C, TFib)

The *trivial fibrations* are the algebras (A, α) for the pointed endofunctor $+_X : \mathcal{E}/X \longrightarrow \mathcal{E}/X$.

Such an algebra (A, α) has lifts against all cofibrations.

The trivial fibrations form the right class of the *cofibration wfs* (C, TFib). The factorization axiom follows from the monad multiplication.

Because \mathcal{C} is stable under all pullbacks, we have:

Corollary

The trivial fibrations are stable under all pushforwards.

The Leibniz adjunction

For any map $u: A \rightarrow B$ in \mathcal{E} , the Leibniz adjunction

$$(-) \otimes u \dashv u \Rightarrow (-)$$

relates the *pushout-product* with *u* and the *pullback-hom* with *u*.

The Leibniz adjunction

The functors
$$(-\otimes u) \dashv (u \Rightarrow -) : \mathcal{E}^2 \longrightarrow \mathcal{E}^2$$
 also satisfy
 $(c \otimes u) \boxtimes f \quad \Leftrightarrow \quad c \boxtimes (u \Rightarrow f)$

with respect to the diagonal filling relation.

This holds by adjointness.

The fibration wfs $(TCof, \mathcal{F})$

We define the fibrations in terms of the trivial fibrations by:

$$f \in \mathcal{F}$$
 iff $(\delta \Rightarrow f) \in \mathsf{TFib}$

where the pullback-hom $\delta \Rightarrow f$ is with the generic point $\delta : 1 \to \mathbb{I}$, in the slice category \mathcal{E}/\mathbb{I} . Expressed in \mathcal{E} this gives the following.

Definition

A map $f: Y \to X$ is a *fibration* if $\delta \Rightarrow f$ below is a trivial fibration.

The fibration wfs $(\mathsf{TCof}, \mathcal{F})$

The more familiar "box-filling" condition results by adjointness.

$$f \in \mathcal{F} \quad \text{iff} \quad (\delta \Rightarrow f) \in \mathsf{TFib}$$
$$\text{iff} \quad c \boxtimes (\delta \Rightarrow f) \quad \text{for all } c \in \mathcal{C}$$
$$\text{iff} \quad (c \otimes \delta) \boxtimes f \quad \text{for all } c \in \mathcal{C}$$

The fibration wfs (TCof, \mathcal{F})

Proposition

There is a wfs $(TCof, \mathcal{F})$ with these fibrations as \mathcal{F} .

- \cdot We define TCof by lifting against $\mathcal{F},$ so the orthogonality axiom is immediate.
- For the factorization axiom, we use Garner's small object argument.
- · Swan has given a constructive version using W-types.
- The factorization systems (C, TFib) and (TCof, F) are actually *algebraic*, with associated diagonal filling *structures*.

Frobenius

Like the trivial fibrations, the fibrations are stable under all pullbacks just because they are a right class. But unlike the trivial fibrations, they are *not* stable under all pushforwards.

However, we do have:

Theorem

The fibrations are stable under pushforward along fibrations.

Corollary (Frobenius)

The trivial cofibrations are stable under pullback along fibrations.

Recall that $f : A \to X$ is a fibration iff $\delta \Rightarrow f$ is a trivial fibration:

We indicate this briefly as follows:

Consider fibrations $B \longrightarrow A \longrightarrow X$.

Thus we have:

Taking the pushforward of the right column yields $\Pi_A B \longrightarrow X$.

We want to show that $\delta \Rightarrow \prod_A B$ is a trivial fibration.

The pushforward of $\delta \Rightarrow B$ along $A^{\mathbb{I}} \longrightarrow X^{\mathbb{I}}$ is a trivial fibration over $X^{\mathbb{I}}$, since these are closed under all pushforwards.

One then shows that there is a retraction of $\Pi_{A^{\mathbb{I}}}.\delta \Rightarrow B$ onto $\delta \Rightarrow \Pi_A B$ over $X^{\mathbb{I}}$, whence the latter is also a trivial fibration.

References

For details see:

Awodey: A Quillen model structure on cartesian cubical sets. www.github.com/awodey/math/qms (2019)

This algebraic proof is derived from the type theoretic one in:

Cohen, Coquand, Huber, Mörtberg: Cubical Type Theory: A constructive interpretation of the univalence axiom. TYPES 2015.

The retraction

For example to get $s : (\Pi_A B)_{\epsilon} \longrightarrow \Pi_{A^{\mathbb{I}}} B^*_{\epsilon}$ first interpolate B_{ϵ} . Then $(\Pi_A B)_{\epsilon} \cong \Pi_{A_{\epsilon}} B_{\epsilon}$ by Beck-Chavelley.

The retraction

