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Multisorted algebraic theories

An algebraic theory (or Lawvere theory) consists of :

1. A set S of sorts,

2. a set F of sorted function symbols, each written

x:A1, . . . xn:An ` f : A (A1, . . . , An, A ∈ S).

3. A set of equations between terms over F.
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Dependently sorted algebraic theories

Question

What should a dependently sorted algebraic theory be?

Many approaches

I Cartmell’s generalised algebraic theories [Car78].

I Makkai’s logic with dependent sorts [Mak95].

I Fiore’s Σn-models with substitution [Fio08].

I Palmgren’s DFOL signatures [Pal16].

I Others (Aczel, Belo, QIITs ...)
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I will present a strictly less general definition than all of the above

. . . but which has the « bon goût » of closely resembling

algebraic/Lawvere theories from a category-theoretic point of view.

In fact, what I’ll call dependently typed theories are exactly the

Σ0-models with substitution of [Fio08]. (I wish I had known this

earlier.)
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Equivalent categorical definitions of algebraic theory

Let S ∈ Set.

Definition
An S-sorted algebraic theory is a category with finite products

whose objects are freely generated by S.

Definition
An S-sorted algebraic theory is a finitary monad on Set/S = Ŝ.
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Let Fin(S) = Fin/S be the (small) category of finite sets over S.

Then the presheaf category SetFin(S)×S of cartesian S-sorted

term signatures has a “substitution” monoidal product.

Definition
An S-sorted algebraic theory is a monoid in the monoidal category

SetFin(S)×S .
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Combinatorics
These definitions are based on a combinatorial view of substitution

of sorted terms of an algebraic theory as “cartesian” grafting of

trees (cartesian = with weakening and duplication of inputs).

• • • • •

f

•

A term in a multisorted Lawvere

theory takes a finite coproduct of

sorts as input, and has an output

sort.

Whence S-sorted term signatures

as objects of SetFin(S)×S .
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Generalising this picture to dependent types
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Dependent type signatures

We begin with a syntactic definition.

A (dependent type) signature S is a graded set S =
∐

n∈N Sn,

such that each Sj is a set of type declarations over the signature

S<j =
∐

i<j Si.

A type declaration over a signature S is a pair (Γ, A) where Γ is a

(Martin-Löf) context typed by S and A is a (fresh) type symbol.
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Examples

I

` Ob type

x, y:Ob ` Hom(x, y) type

I

` C type

∀k ∈ N, x1, . . . , xk, y:C ` O(x1, . . . , xk, y) type
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Every signature S has a syntactic category whose objects are

contexts Γ typed by S and whose morphisms are context

morphisms Γ→ ∆. Since there are are no term symbols, all

morphisms are substitutions of variables only.

For a signature S, let CS be the full subcategory of its category of

contexts on the contexts (Γ, x:A) for all (Γ, A) in S.
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Categorical parenthesis

Definition
A direct category is a small category C such that the relation

c < d ⇔ ∃ a non-identity arrow c→ d

on the objects of C is well-founded (i.e. no infinite chains . . . < c0).

Definition
A category C is locally finite if each of its slice categories is finite.
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Categorical definition of a signature

Signatures are precisely locally finite direct categories (cf.

[Mak95, Fio08]).

Proposition

The map S 7→ Cop
S is an equivalence between signatures and locally

finite direct categories.

13 / 36



Examples of dependent type signatures

0. Any set S, seen as a discrete category.

1. The category {s, t : 0⇒ 1}.

2. The category G of globes.

3. The category ∆+ of semi-simplices.

4. The category eltpl of planar corollas/elementary trees.

5. The category Ωpl of planar trees.

6. The category O of opetopes.
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Dependently typed theories

Syntactically, a dependently typed theory consists of:

1. A dependent type signature S,

2. an ordered set of term declarations of the form Γ ` f : Aσ,

3. and an ordered set of equations of the form Γ ` t1 = t2 : Aσ,

where Γ is any context typed by S, σ is a term substitution, and t1
and t2 are typed terms.
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Example of a dependently typed theory
The theory of categories:

` Ob type

x, y:Ob ` Hom(x, y) type

x:Ob ` 1x : Hom(x, x)

. . . , a:Hom(x, y), b:Hom(y, z) ` b ◦ a : Hom(x, z)

x, y:Ob, a:Hom(x, y) ` a ◦ 1x = a : Hom(x, y)

x, y:Ob, a:Hom(x, y) ` 1y ◦ a = a : Hom(x, y)

. . . ` (c ◦ b) ◦ a = c ◦ (b ◦ a) : Hom(x1, x4)

We will see that there are dependently typed theories of

2-categories, n-categories, ω-categories, reflexive graphs, simplicial

sets, opetopic sets, planar operads . . .
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Categorical definition

Let S be a locally finite direct category (let S be the corresponding

signature). Let Fin(S) denote the full subcategory of Ŝ of the

finitely presentable objects.

Recall that any X in Ŝ is in Fin(S) just when X is a finite colimit

of representables.
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For each s in S, let S−/s denote the full subcategory of the slice

category S/s such that the only object not in S−/s is the identity

morphism 1s : s→ s. The colimit of the functor S−/s → S ↪→ Ŝ is a

subobject ∂s ↪→ s called the boundary of the representable

presheaf s.

Since S is locally finite, ∂s is finitely presentable for every s in S.
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Definition
A finite cell complex is a finite sequence of morphisms

∅ → X0 . . .→ Xn in Ŝ where each morphism Xi → Xi+1 is a

chosen pushout of some ∂s ↪→ s.

Lemma
Any X in Ŝ is finitely presentable if and only if there exists a finite

cell complex ∅ → . . .→ X.

We define Cell(S) to be the category whose objects are finite cell

complexes, and such that Hom(∅ . . .→ X, ∅ . . .→ Y ) = Ŝ(X,Y ).
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Clearly, the functor Cell(S)→ Fin(S) is an equivalence of

categories.

Proposition

Cell(S)op is isomorphic to the syntactic category of the signature S.

Corollary

Cell(S)op is a contextual category.
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Definition
The category CollS of cartesian S-sorted term signatures is

defined to be the presheaf category
[
Cell(S), Ŝ

]
.

For every context Γ typed by S and every type declaration s in S, a

term signature X in CollS gives (functorially) a set (XΓ)s of term

declarations of type s in the context Γ.
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Categorical parenthesis

Let C be a small category and let Fin(C) be as previously.

The presheaf category
[
Fin(C), Ĉ

]
has a “substitution” monoidal

product defined by

((Y ◦X)Γ)c :=

∫ Θ∈Fin(C)

(YΘ)c × Ĉ(Θ, XΓ)

whose unit is the inclusion functor E : Fin(C) ↪→ Ĉ.
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The functor LanE(−) :
[
Fin(C), Ĉ

]
→

[
Ĉ, Ĉ

]
of left Kan

extension along E : Fin(C) ↪→ Ĉ is (1) fully faithful and (2)

monoidal.

Fin(C) Ĉ

Ĉ

E

X

∼=
LanEX

(1)

LanE(Y ◦X) ∼= LanEY ◦ LanEX ; LanEE ∼= id
Ĉ

(2)
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Proposition

There is an equivalence of categories between monoids in[
Fin(C), Ĉ

]
and finitary monads on Ĉ.
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Equivalent definitions of dependently typed theory

From the previous parenthesis, we have a substitution monoidal

product on CollS.

The term algebra of X ∈ CollS is the free monoid on X.

Definition
An S-sorted dependently typed theory is a monoid in

CollS '
[
Fin(S), Ŝ

]
.
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Definition
An S-sorted dependently typed theory is a finitary monad on Ŝ.

Definition
An S-sorted dependently typed theory is an S-contextual
category.

The last definition generalises the “finite-product category”

definition of algebraic theories.
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Combinatorics of dependently typed theories
The substitution monoidal product for S-sorted terms can also be

seen as “cartesian” grafting of trees.

f

A term of an S-sorted dependently typed

theory takes a finite cell complex as in-

put, and has as output sort a cell (i.e. an

object of S).

(This point of view is closely related to

Burroni-Leinster T -operads.)
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Examples of dependently typed theories

0. Every multisorted algebraic theory.

1. The identity monads on Gph, Ĝ, ∆̂+, êltpl, Ω̂pl, Ô.

2. The free-category monad on Gph.

3. The free-planar (coloured) operad monad on êltpl.

4. The free simplicial set monad on semi-simplicial sets.

5. The free-strict-ω-category monad on Ĝ.

6. The free-weak-ω-category monad on Ĝ.

7. For T : Ŝ→ Ŝ a finitary cartesian monad, every T -operad (à la

Burroni-Leinster).
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Theorem (L.S., LeFanu Lumsdaine)

The following categories are equivalent:

1. The category CxlCat(S) of S-contextual categories.

2. The category Mon(CollS, ◦, E) of monoids in cartesian

S-sorted term signatures.

3. The category of finitary monads on Ŝ.

3’. The category of Lawvere theories with arities Cell(S)→ Ŝ.
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Conclusion

In sum,

I We introduce dependently typed theories as a generalisation

of multisorted algebraic theories.

I These “cartesian dependent multicategories” are less expressive

than many other syntactic approaches, but have a nice

algebraic description.

I They manage to capture a large number of well-known

examples.
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Reflections on dependently coloured operads
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Regular algebraic theories

A term Γ ` t : A of a multisorted algebraic theory is linear (or

“planar”) if each variable in Γ appears exactly once in t, and in the

same order as in Γ.

A multisorted algebraic theory is strongly regular if each of its

equations is between “linear” terms.

Strongly regular algebraic theories and planar coloured operads are

closely related.
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Coloured operads

Let S be a set of sorts (“colours” in operad jargon). Then the free

monoidal category on S is (equivalent to) the set ΣS of finite lists

of elements of S. There is an obvious surjective on objects functor

ΣS → Fin(S) taking (s1, . . . , sk) to the coproduct of the

representables s1, . . . , sk.

The category of linear S-sorted term signatures is the presheaf

category Set/(ΣS × S) =
[
ΣS, Ŝ

]
.
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The linear substitution monoidal product on
[
ΣS, Ŝ

]
is given by

convolution :

First, for X ∈
[
ΣS, Ŝ

]
and (s1, . . . , sk) ∈ ΣS we define

X(s1,...,sk) ∈ [ΣS, Set] as the Day convolution

(Xs1 ⊗ . . .⊗Xsk)(s′1,...,s
′
m) :=

∑
f:{s1,...,sk}→ΣS

fs1+...+fsk=(s′1,...,s′m)

k∏
i=1

X(fsi)si .

(X(s1,...,sk))(s′1,...,s
′
m) is the set of linear substitutions

(s′1, . . . , s
′
m)→ (s1 . . . , sk) using terms from X.
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Next, for X,Y ∈
[
ΣS, Ŝ

]
, we define (Y ◦X) ∈

[
ΣS, Ŝ

]
by

((Y ◦X)v̄)s :=
∑
w̄∈ΣS

(Y w̄)s × (Xw̄)v̄

This is just the combinatorics of grafting planar labeled trees.

An S-coloured planar operad is a monoid in
[
ΣS, Ŝ

]
.
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“Convolution” for S-sorted signatures?

For a dependent type signature S, there seems to be an analogous

category ΣS with essentially the same objects as Cell(S).

Given an object X ∈
[
ΣS, Ŝ

]
and Γ,∆ ∈ Cell(S), we can define

the set of linear substitutions ∆→ Γ using terms from X as∑
f :S/Γ→ΣS

“ colim ”f=∆

∫
x:s→Γ

X(fx)s,

where the end is over the functor

S/Γ× (S/Γ)op Cell(S)× Sop Set.
f×p X
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Question

Does this give a monoidal product and a notion of dependently

coloured operad?
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