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Setoids

A set is de�ned by describing exactly what must be done in order to
construct an element of the set and what must be done in order to show
that two elements are equal.

— Errett Bishop, Foundations of Constructive Analysis, 1967

In classical maths: common technique for constructing sets —
quotient by an equivalence relation.

In (some �avours of) constructive maths: take as de�nition of set.
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Setoids in type theory
(Work in type-theoretic setting. Ignore size/universe issues.)

De�nition
A setoid: a type X , together with a relation ∼X : X X Type,
satisfying re�exivity, symmetry, transitivity.

A setoid map: a function f : X Y , sending ∼X to ∼Y .

In Bishop-style, and some type-theoretic developments: most/all
mathematical structures based on setoids, not sets/types.

Advantages: clear constructive content; minimal foundational
commitment.

Disadvantages: much bureacracy, boilerplate lemmas; some pitfalls;
arguably alien to traditional mathematics.

Bureaucracy and pitfalls: “setoid hell”. Erik’s preferred view:
Bishop’s purgatorium — a staging-point to Cantor’s paradise!
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Setoid hell, concretely
Need to always carry around slightly more complicated objects;
prove functions respect equality, etc.

Worst with dependently-sorted structures. What is a family of
setoids indexed over a setoid?

De�nition
X a setoid. A family of setoids Y indexed over X :
I for each x : X , a type Yx ;
I relations ∼Y . . . on each Yx? between Yx and Yx′ , for x ∼ x ′?
I respecting ∼X somehow?

Several equivalent correct de�nitions. Also some easily-mistaken
incorrect de�nitions. Also subtle pitfalls with using the correct
de�nitions.

Need some guiding framework!
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Setoids as a translation

Powerful organisational framework: setoids as translation from a
more extensional type theory (with quotients) into a more
intensional type theory.

ETT ITT

(Developed by various authors; notably Maietti and Sambin’s
two-layer Minimalist Foundation.)

Boilerplate lemmas automatically provided by translation.

Compare other foundational translations:
I Double-negation translation: classical to intuitionistic logic.
I Chu construction: linear HOL to IHOL (Shulman 2018).
I Program-extraction/realisability: various logics to

programming languages.
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E-categories

Di�erent kind of organisational framework: category theory.

De�nition
An e-category C:
I type of objects C0;
I setoids of morphisms C1(x, y), for x, y : C0;
I identities, composition maps C1(x, y) × C1(y, z) C1(x, z);
I satisfying category axioms, up to setoid equality.

Original motivation: organise setoid-based algebra, like classical
categories organise set-based algebra.
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Families of setoids revisited

De�nition
X a setoid. The discrete e-category D(X ) on X :
I type of objects X ;
I hom-setoids (x ∼X y), with trivial equality (e ∼x∼Xy e′) B 1.

De�nition
A family of setoids on X is an e-functor Y : D(X ) Setoid.

Here and other ways: e-categories clearly useful. But: outside the
image of the translation ETT ITT, since objects a type not a
setoid

Translation is guiding but not limiting. Again, compare other
foundational translations.
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HoTT pre-categories

Recall: categories in HoTT/univalent foundations
(Ahrens–Kapulkin–Shulman).

De�nition
A pre-category C:
I type of objects C0;
I sets of morphisms C1(x, y), for x, y : C0;
I identities, composition maps C1(x, y) × C1(y, z) C1(x, z);
I satisfying category axioms, up to propositional equality.

(Work now in HoTT; set means h-set, etc.)
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Saturation

De�nition
A precat C is saturated (aka univalent, aka a category) if for all x, y,
the canonical map (x =C0 y) (x �C y) is an equivalence.

Brie�y: equality of objects is isomorphism.

Classically: no precategory with non-trivial automorphisms can be
saturated.

In HoTT: most natural examples saturated (by univalence); most
constructions preserve saturation.

When constructions break saturation: can take Rezk-completion
C RC(C), adding the isos as equalities in the type of objects.

Further variant, promoted by Voevodsky in UniMath: drop
assumption that hom-types are sets.
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Maximal unsaturation

E-categories are the maximally unsaturated notion.

In an e-cat, call the setoid equalities e : f ∼C(x,y) g 2-cells.

De�nition
An e-category C is:
I 2-saturated if equality of 2-cells is trivially true,

i.e. each f ∼C(x,y) g is a mere proposition;
I 1-saturated if equality of arrows is 2-cells,

i.e. each ∼C(x,y) is actual propositional equality;
I 0-saturated if equality of objects is isomorphism.

Pattern: equality of each sort is “indiscernability w.r.t. higher sorts”.
(Cf. Tsementzis et al, saturation in FOLDS-structures.)
AKS precategories: ≥ 1-saturation. UniMath’s precategories:
1-saturation. Saturated categories: ≥ 0-saturation.
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Back to setoids

De�nition
A setoid X is:
I 1-saturated if equality of setoid-equalities is trivially true,

i.e. ∼X is proposition-valued;
I 0-saturated if equality of elements is setoid-equality,

i.e. ∼X is actual propositional equality on X .

0-saturated: just a type. ≥ 0-saturated: a set.

Taking quotient of a setoid: like taking Rezk-completion of a
category.
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Setoids are like categories

Working with (un-saturated) setoids: analogous to working with
(un-saturated) categories — standard (unavoidably) in traditional
maths!

Analogy holds up surprisingly far. E.g. bureacracy of setoid lemmas
— compare ubiquitous tacit functoriality/naturality lemmas.

Response 1

Un-saturated categories are as bad as setoids! Always work with
saturated categories; take Rezk-completion whenever needed.

Response 2

Setoids are good as traditional categories! Not just a constructive
hack; accept setoids as genuine part of mathematical practice.

Is “setoid hell” really just “formalisation hell”?
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